Search Results

Now showing 1 - 3 of 3
  • Item
    The STELLA robotic observatory on tenerife
    (New York : Hindawi Publishing Corporation, 2010) Strassmeier, K.G.; Granzer, T.; Weber, M.; Woche, M.; Popow, E.; Jrvinen, A.; Bartus, J.; Bauer, S.-M.; Dionies, F.; Fechner, T.; Bittner, W.; Paschke, J.
    The Astrophysical Institute Potsdam (AIP) and the Instituto de Astrofísica de Canarias (IAC) inaugurated the robotic telescopes STELLA-I and STELLA-II (STELLar Activity) on Tenerife on May 18, 2006. The observatory is located on the Izaa ridge at an elevation of 2400m near the German Vacuum Tower Telescope. STELLA consists of two 1.2m alt-az telescopes. One telescope fiber feeds a bench-mounted high-resolution echelle spectrograph while the other telescope feeds a wide-field imaging photometer. Both scopes work autonomously by means of artificial intelligence. Not only that the telescopes are automated, but the entire observatory operates like a robot, and does not require any human presence on site. Copyright © 2010 Klaus G. Strassmeier et al.
  • Item
    Three years of experience with the STELLA robotic observatory
    (New York : Hindawi Publishing Corporation, 2010) Granzer, T.; Weber, M.; Strassmeier, K.G.
    Since May 2006, the two STELLA robotic telescopes at the Izaa observatory in Tenerife, Spain, delivered an almost uninterrupted stream of scientific data. To achieve such a high level of autonomous operation, the replacement of all troubleshooting skills of a regular observer in software was required. Care must be taken on error handling issues and on robustness of the algorithms used. In the current paper, we summarize the approaches we followed in the STELLA observatory. Copyright © 2010 Thomas Granzer et al.
  • Item
    The Propagation of Coherent Waves Across Multiple Solar Magnetic Pores
    (London : Institute of Physics Publ., 2022) Grant, S.D.T.; Jess, D.B.; Stangalini, M.; Jafarzadeh, S.; Fedun, V.; Verth, G.; Keys, P.H.; Rajaguru, S.P.; Uitenbroek, H.; MacBride, C.D.; Bate, W.; Gilchrist-Millar, C.A.
    Solar pores are efficient magnetic conduits for propagating magnetohydrodynamic wave energy into the outer regions of the solar atmosphere. Pore observations often contain isolated and/or unconnected structures, preventing the statistical examination of wave activity as a function of the atmospheric height. Here, using high-resolution observations acquired by the Dunn Solar Telescope, we examine photospheric and chromospheric wave signatures from a unique collection of magnetic pores originating from the same decaying sunspot. Wavelet analysis of high-cadence photospheric imaging reveals the ubiquitous presence of slow sausage-mode oscillations, coherent across all photospheric pores through comparisons of intensity and area fluctuations, producing statistically significant in-phase relationships. The universal nature of these waves allowed an investigation of whether the wave activity remained coherent as they propagate. Utilizing bisector Doppler velocity analysis of the Ca ii 8542 Å line, alongside comparisons of the modeled spectral response function, we find fine-scale 5 mHz power amplification as the waves propagate into the chromosphere. Phase angles approaching zero degrees between co-spatial line depths spanning different line depths indicate standing sausage modes following reflection against the transition region boundary. Fourier analysis of chromospheric velocities between neighboring pores reveals the annihilation of the wave coherency observed in the photosphere, with examination of the intensity and velocity signals from individual pores indicating they behave as fractured waveguides, rather than monolithic structures. Importantly, this work highlights that wave morphology with atmospheric height is highly complex, with vast differences observed at chromospheric layers, despite equivalent wave modes being introduced into similar pores in the photosphere.