Search Results

Now showing 1 - 7 of 7
  • Item
    Thermal activation of catalytic microjets in blood samples using microfluidic chips
    (Cambridge : Royal Society of Chemistry, 2013) Restrepo-Pérez, Laura; Soler, Lluís; Martínez-Cisneros, Cynthia S.; Sanchez, Samuel; Schmidt, Oliver G.
    We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room temperature, the catalytic microjets can be activated at physiological temperature and, consequently, self-propel in diluted solutions of blood samples. We prove that these microjets self-propel in 10× diluted blood samples using microfluidic chips.
  • Item
    Anharmonic strong-coupling effects at the origin of the charge density wave in CsV3Sb5
    ([London] : Nature Publishing Group UK, 2024) He, Ge; Peis, Leander; Cuddy, Emma Frances; Zhao, Zhen; Li, Dong; Zhang, Yuhang; Stumberger, Romona; Moritz, Brian; Yang, Haitao; Gao, Hongjun; Devereaux, Thomas Peter; Hackl, Rudi
    The formation of charge density waves is a long-standing open problem, particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently further underpin this notion. Here, we study the Kagome metal CsV3Sb5 using polarized inelastic light scattering and density functional theory calculations. We observe a significant gap anisotropy with 2Δmax/kBTCDW≈20, far beyond the prediction of mean-field theory. The analysis of the A1g and E2g phonons, including those emerging below TCDW, indicates strong phonon-phonon coupling, presumably mediated by a strong electron-phonon interaction. Similarly, the asymmetric Fano-type lineshape of the A1g amplitude mode suggests strong electron-phonon coupling below TCDW. The large electronic gap, the enhanced anharmonic phonon-phonon coupling, and the Fano shape of the amplitude mode combined are more supportive of a strong-coupling phonon-driven charge density wave transition than of a Fermi surface instability or an exotic mechanism in CsV3Sb5.
  • Item
    Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes
    (London : Nature Publishing Group, 2017) Boehnke, A.; Martens, U.; Sterwerf, C.; Niesen, A.; Huebner, T.; Von Der Ehe, M.; Meinert, M.; Kuschel, T.; Thomas, A.; Heiliger, C.; Münzenberg, M.; Reiss, G.
    Spin caloritronics studies the interplay between charge-, heat- and spin-currents, which are initiated by temperature gradients in magnetic nanostructures. A plethora of new phenomena has been discovered that promises, e.g., to make wasted heat in electronic devices useable or to provide new read-out mechanisms for information. However, only few materials have been studied so far with Seebeck voltages of only some microvolt, which hampers applications. Here, we demonstrate that half-metallic Heusler compounds are hot candidates for enhancing spin-dependent thermoelectric effects. This becomes evident when considering the asymmetry of the spin-split density of electronic states around the Fermi level that determines the spin-dependent thermoelectric transport in magnetic tunnel junctions. We identify Co2FeAl and Co2FeSi Heusler compounds as ideal due to their energy gaps in the minority density of states, and demonstrate devices with substantially larger Seebeck voltages and tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B-based junctions.
  • Item
    Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal
    (London : Nature Publishing Group, 2018) Seiro, S.; Jiao, L.; Kirchner, S.; Hartmann, S.; Friedemann, S.; Krellner, C.; Geibel, C.; Si, Q.; Steglich, F.; Wirth, S.
    Strong electron correlations can give rise to extraordinary properties of metals with renormalized Landau quasiparticles. Near a quantum critical point, these quasiparticles can be destroyed and non-Fermi liquid behavior ensues. YbRh2Si2 is a prototypical correlated metal exhibiting the formation of quasiparticle and Kondo lattice coherence, as well as quasiparticle destruction at a field-induced quantum critical point. Here we show how, upon lowering the temperature, Kondo lattice coherence develops at zero field and finally gives way to non-Fermi liquid electronic excitations. By measuring the single-particle excitations through scanning tunneling spectroscopy, we find the Kondo lattice peak displays a non-trivial temperature dependence with a strong increase around 3.3 K. At 0.3 K and with applied magnetic field, the width of this peak is minimized in the quantum critical regime. Our results demonstrate that the lattice Kondo correlations have to be sufficiently developed before quantum criticality can set in.
  • Item
    Paris Climate Agreement passes the cost-benefit test
    ([London] : Nature Publishing Group UK, 2020) Glanemann, Nicole; Willner, Sven N.; Levermann, Anders
    The Paris Climate Agreement aims to keep temperature rise well below 2 °C. This implies mitigation costs as well as avoided climate damages. Here we show that independent of the normative assumptions of inequality aversion and time preferences, the agreement constitutes the economically optimal policy pathway for the century. To this end we consistently incorporate a damage-cost curve reproducing the observed relation between temperature and economic growth into the integrated assessment model DICE. We thus provide an inter-temporally optimizing cost-benefit analysis of this century’s climate problem. We account for uncertainties regarding the damage curve, climate sensitivity, socioeconomic future, and mitigation costs. The resulting optimal temperature is robust as can be understood from the generic temperature-dependence of the mitigation costs and the level of damages inferred from the observed temperature-growth relationship. Our results show that the politically motivated Paris Climate Agreement also represents the economically favourable pathway, if carried out properly.
  • Item
    Unexpected differences between surface and bulk spectroscopic and implied Kondo properties of heavy fermion CeRh2Si2
    (2020) Poelchen, Georg; Schulz, Susanne; Mende, Max; Güttler, Monika; Generalov, Alexander; Fedorov, Alexander V.; Caroca-Canales, Nubia; Geibel, Christoph; Kliemt, Kristin; Krellner, Cornelius; Danzenbächer, Steffen; Usachov, Dmitry Y.; Dudin, Pavel; Antonov, Victor N.; Allen, James W.; Laubschat, Clemens; Kummer, Kurt; Kucherenko, Yuri; Vyalikh, Denis V.
    Ultra-violet angle-resolved photoemission spectroscopy (UV-ARPES) was used to explore the temperature dependence of the Ce-4f spectral responses for surface and bulk in the antiferromagnetic Kondo lattice CeRh2Si2. Spectra were taken from Ce- and Si-terminated surfaces in a wide temperature range, and reveal characteristic 4f patterns for weakly (surface) and strongly (bulk) hybridized Ce, respectively. The temperature dependence of the Fermi level peak differs strongly for both cases implying that the effective Kondo temperature at the surface and bulk can be rather distinct. The greatly reduced crystal–electric-field (CEF) splitting at the surface gives reason to believe that the surface may exhibit a larger effective Kondo temperature because of a higher local-moment effective degeneracy. Further, the hybridization processes could strongly affect the 4f peak intensity at the Fermi level. We derived the k-resolved dispersion of the Kondo peak which is also found to be distinct due to different sets of itinerant bands to which the 4f states of surface and bulk Ce are coupled. Overall our study brings into reach the ultimate goal of quantitatively testing many-body theories that link spectroscopy and transport properties, for both the bulk and the surface, separately. It also allows for a direct insight into the broader problem of Kondo lattices with two different local-moment sublattices, providing some understanding of why the cross-talking between the two Kondo effects is weak.
  • Item
    Role of hole confinement in the recombination properties of InGaN quantum structures
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Anikeeva, M.; Albrecht, M.; Mahler, F.; Tomm, J. W.; Lymperakis, L.; Chèze, C.; Calarco, R.; Neugebauer, J.; Schulz, T.
    We study the isolated contribution of hole localization for well-known charge carrier recombination properties observed in conventional, polar InGaN quantum wells (QWs). This involves the interplay of charge carrier localization and non-radiative transitions, a non-exponential decay of the emission and a specific temperature dependence of the emission, denoted as “s-shape”. We investigate two dimensional In0.25Ga0.75N QWs of single monolayer (ML) thickness, stacked in a superlattice with GaN barriers of 6, 12, 25 and 50 MLs. Our results are based on scanning and high-resolution transmission electron microscopy (STEM and HR-TEM), continuous-wave (CW) and time-resolved photoluminescence (TRPL) measurements as well as density functional theory (DFT) calculations. We show that the recombination processes in our structures are not affected by polarization fields and electron localization. Nevertheless, we observe all the aforementioned recombination properties typically found in standard polar InGaN quantum wells. Via decreasing the GaN barrier width to 6 MLs and below, the localization of holes in our QWs is strongly reduced. This enhances the influence of non-radiative recombination, resulting in a decreased lifetime of the emission, a weaker spectral dependence of the decay time and a reduced s-shape of the emission peak. These findings suggest that single exponential decay observed in non-polar QWs might be related to an increasing influence of non-radiative transitions.