Search Results

Now showing 1 - 3 of 3
  • Item
    Effective group dispersion of terahertz quantum-cascade lasers
    (Bristol : IOP Publ., 2020) Röben, Benjamin; Lü, Xiang; Biermann, Klaus; Schrottke, Lutz; Grahn, Holger T.
    Terahertz (THz) quantum-cascade lasers (QCLs) are based on complex semiconductor heterostructures, in which the optical gain is generated by intersubband transitions. Using the spacing of the laser modes in the emission spectra, we have determined the effective group refractive index for more than one hundred THz QCLs of the hybrid design with Fabry-Pérot resonators based on single-plasmon waveguides. The experimentally obtained values of for emission frequencies between 2.5 and 5.6 THz generally follow the trend of derived from electromagnetic simulations. However, for a certain number of QCLs, the experimental values of exhibit a rather large deviation from the general trend and the simulation results. From a thorough analysis, we conclude that differences in the optical gain/loss spectra are responsible for this deviation, which lead to a modification of the dispersion in the active region and consequently to altered values of. The analysis also provides evidence that these differences in the gain/loss spectra originate from both, the details of the design and the gain broadening due to interface roughness. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
    (Bristol : IOP Publ., 2023) Lü, X.; Röben, B.; Biermann, K.; Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; van Helden, J.H.; Schrottke, L.; Grahn, H.T.
    We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.
  • Item
    Development of terahertz quantum-cascade lasers as sources for heterodyne receivers
    (Berlin : Humboldt-Universität zu Berlin, 2012) Wienold, Martin
    This thesis presents the development and optimization of terahertz quantum-cascade lasers (THz QCLs) as sources for heterodyne receivers. A particular focus is on single-mode emitters for the heterodyne detection of the important astronomic oxygen (OI) line at 4.75 THz. Various active-region designs are investigated. High-output-power THz QCLs with low operating voltages and emission around 3 THz are obtained for an active region, which involves phonon-assisted intersubband transitions. While these QCLs are based on a GaAs/Al_xGa_(1-x)As heterostructure with x=0.15, similar heterostructures with x=0.25 allowed for very low threshold current densities. By successive modifications of the active-region design, THz QCLs have been optimized toward the desired frequency at 4.75 THz. To obtain single-mode operation, first-order lateral distributed-feedback (DFB) gratings are investigated. It shows that such gratings allow for single-mode operation in combination with high continuous-wave (cw) output powers. A general method is presented to calculate the coupling coefficients of lateral gratings. In conjunction with this method, the lasers are well described by the coupled-mode theory of DFB lasers with two reflective end facets. Single-mode operation within the specified frequency bands at 4.75 THz is demonstrated. Stable operation of THz QCLs is often in conflict with the occurrence of a negative differential resistance (NDR) regime at elevated field strengths and the formation of electric-field domains (EFDs). Stationary EFDs are shown to be related to discontinuities in the cw light-current-voltage characteristics, while non-stationary EFDs are related to current self-oscillations and cause a temporal modulation of the output power. To model such effects, the nonlinear transport equations of weakly coupled superlattices are adopted for QCLs by introducing an effective drift velocity-field relation. Zugriffsstatistik: