Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

High Blocking Temperature of Magnetization and Giant Coercivity in the Azafullerene Tb 2 @C 79 N with a Single-Electron Terbium–Terbium Bond

2019, Velkos, Georgios, Krylov, Denis S., Kirkpatrick, Kyle, Spree, Lukas, Dubrovin, Vasilii, Büchner, Bernd, Avdoshenko, Stanislav M., Bezmelnitsyn, Valeriy, Davis, Sean, Faust, Paul, Duchamp, James, Dorn, Harry C., Popov, Alexey A.

The azafullerene Tb 2 @C 79 N is found to be a single-molecule magnet with a high 100-s blocking temperature of magnetization of 24 K and large coercivity. Tb magnetic moments with an easy-axis single-ion magnetic anisotropy are strongly coupled by the unpaired spin of the single-electron Tb−Tb bond. Relaxation of magnetization in Tb 2 @C 79 N below 15 K proceeds via quantum tunneling of magnetization with the characteristic time τ QTM =16 462±1230 s. At higher temperature, relaxation follows the Orbach mechanism with a barrier of 757±4 K, corresponding to the excited states, in which one of the Tb spins is flipped. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond

2019, Liu, F., Velkos, G., Krylov, D.S., Spree, L., Zalibera, M., Ray, R., Samoylova, N.A., Chen, C.-H., Rosenkranz, M., Schiemenz, S., Ziegs, F., Nenkov, K., Kostanyan, A., Greber, T., Wolter, A.U.B., Richter, M., Büchner, B., Avdoshenko, S.M., Popov, A.A.

Engineering intramolecular exchange interactions between magnetic metal atoms is a ubiquitous strategy for designing molecular magnets. For lanthanides, the localized nature of 4f electrons usually results in weak exchange coupling. Mediating magnetic interactions between lanthanide ions via radical bridges is a fruitful strategy towards stronger coupling. In this work we explore the limiting case when the role of a radical bridge is played by a single unpaired electron. We synthesize an array of air-stable Ln 2 @C 80 (CH 2 Ph) dimetallofullerenes (Ln 2 = Y 2 , Gd 2 , Tb 2 , Dy 2 , Ho 2 , Er 2 , TbY, TbGd) featuring a covalent lanthanide-lanthanide bond. The lanthanide spins are glued together by very strong exchange interactions between 4f moments and a single electron residing on the metal–metal bonding orbital. Tb 2 @C 80 (CH 2 Ph) shows a gigantic coercivity of 8.2 Tesla at 5 K and a high 100-s blocking temperature of magnetization of 25.2 K. The Ln-Ln bonding orbital in Ln 2 @C 80 (CH 2 Ph) is redox active, enabling electrochemical tuning of the magnetism.

Loading...
Thumbnail Image
Item

Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range

2020, Castellano-Hernández, Elena, Kalusniak, Sascha, Metz, Philip W., Kränkel, Christian

Here, a diode-pumped laser based on trivalent terbium (Tb3+) as the active ion is reported. Optical pumping of a Tb3+-doped lithium-lutetium-fluoride (LiLuF4) crystal with up to 200 mW from a diode laser emitting at a wavelength of 488.2 nm enables continuous-wave lasing directly in the green and in the yellow. At an emission wavelength of 542 nm, the laser reaches an output power of up to 43.8 mW with a high slope efficiency of 52% with respect to the absorbed pump power. The yellow laser at 587 nm exhibits a slope efficiency of 22% and the output power of 13.8 mW is only limited by the available pump power. Laser thresholds as low as 14 and 27 mW of absorbed pump power are observed for the green and yellow, respectively. The investigations toward further optimization of the laser performance reveal that highly Tb3+-doped materials are suitable for compact, efficient, and affordable diode-pumped solid-state lasers with direct emission in the visible spectral range. These results are of high relevance, as in particular for the yellow spectral range such systems are currently not available. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim