Search Results

Now showing 1 - 3 of 3
  • Item
    Giant thermal expansion and α-precipitation pathways in Ti-Alloys
    (London : Nature Publishing Group, 2017) Bönisch, M.; Panigrahi, A.; Stoica, M.; Calin, M.; Ahrens, E.; Zehetbauer, M.; Skrotzki, W.; Eckert, J.
    Ti-Alloys represent the principal structural materials in both aerospace development and metallic biomaterials. Key to optimizing their mechanical and functional behaviour is in-depth know-how of their phases and the complex interplay of diffusive vs. displacive phase transformations to permit the tailoring of intricate microstructures across a wide spectrum of configurations. Here, we report on structural changes and phase transformations of Ti-Nb alloys during heating by in situ synchrotron diffraction. These materials exhibit anisotropic thermal expansion yielding some of the largest linear expansion coefficients (+ 163.9×10-6 to-95.1×10-6 °C-1) ever reported. Moreover, we describe two pathways leading to the precipitation of the α-phase mediated by diffusion-based orthorhombic structures, α″lean and α″iso. Via coupling the lattice parameters to composition both phases evolve into α through rejection of Nb. These findings have the potential to promote new microstructural design approaches for Ti-Nb alloys and β-stabilized Ti-Alloys in general.
  • Item
    Magnetoelastic coupling and ferromagnetic-type in-gap spin excitations in multiferroic α-Cu2V2O7
    (Bristol : Institute of Physics Publishing, 2018) Wang, L.; Werner, J.; Ottmann, A.; Weis, R.; Abdel-Hafiez, M.; Sannigrahi, J.; Majumdar, S.; Koo, C.; Klingeler, R.
    We investigate magnetoelectric coupling and low-energy magnetic excitations in multiferroic α-Cu2V2O7 by detailed thermal expansion, magnetostriction, specific heat and magnetization measurements in magnetic fields up to 15 T and by high-field/high-frequency electron spin resonance studies. Our data show negative thermal expansion in the temperature range ≤200 K under study. Well-developed anomalies associated with the onset of multiferroic order (canted antiferromagnetism with a significant magnetic moment and ferroelectricity) imply pronounced coupling to the structure. We detect anomalous entropy changes in the temperature regime up to ∼80 K which significantly exceed the spin entropy. Failure of Grüneisen scaling further confirms that several dominant ordering phenomena are concomitantly driving the multiferroic order. By applying external magnetic fields, anomalies in the thermal expansion and in the magnetization are separated. Noteworthy, the data clearly imply the development of a canted magnetic moment at temperatures above the structural anomaly. Low-field magnetostriction supports the scenario of exchange-striction driven multiferroicity. We observe low-energy magnetic excitations well below the antiferromagnetic gap, i.e., a ferromagnetic-type resonance branch associated with the canted magnetic moment arising from Dzyaloshinsii-Moriya (DM) interactions. The anisotropy parameter meV indicates a sizeable ratio of DM- and isotropic magnetic exchange.
  • Item
    Routes to control diffusive pathways and thermal expansion in Ti-alloys
    (London : Nature Publishing Group, 2020) Bönisch, M.; Stoica, M.; Calin, M.
    β-stabilized Ti-alloys present several unexplored and intriguing surprises in relation to orthorhombic α″ phases. Among them are (i) the diffusion-controlled formation of transitional α″iso, α″lean and α″rich phases and ii) the highly anisotropic thermal expansion of martensitic α″. Using the prototypical Ti-Nb system, we demonstrate that the thermodynamic energy landscape reveals formation pathways for the diffusional forms of α″ and may lead to a stable β-phase miscibility gap. In this way, we derive temperature-composition criteria for the occurrence of α″iso and resolve reaction sequences during thermal cycling. Moreover, we show that the thermal expansion anisotropy of martensitic α″ gives rise to directions of zero thermal strain depending on Nb content. Utilizing this knowledge, we propose processing routes to achieve null linear expansion in α″ containing Ti-alloys. These concepts are expected to be transferable to other Ti-alloys and offer new avenues for their tailoring and technological exploitation.