Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Enhancing Robustness of Sortase A by Loop Engineering and Backbone Cyclization

2020, Zou, Zhi, Mate, Diana M., Nöth, Maximilian, Jakob, Felix, Schwaneberg, Ulrich

Staphylococcus aureus sortase A (SaSrtA) is widely used for site-specific protein modifications, but it lacks the robustness for performing bioconjugation reactions at elevated temperatures or in presence of denaturing agents. Loop engineering and subsequent head-to-tail backbone cyclization of SaSrtA yielded the cyclized variant CyM6 that has a 7.5 °C increased melting temperature and up to 4.6-fold increased resistance towards denaturants when compared to the parent rM4. CyM6 gained up to 2.6-fold (vs. parent rM4) yield of conjugate in ligation of peptide and primary amine under denaturing conditions. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Thermal stability and phase transformations of martensitic Ti-Nb alloys

2013, Bönisch, Matthias, Calin, Mariana, Waitz, Thomas, Panigrahi, Ajit, Zehetbauer, Michael, Gebert, Annett, Skrotzki, Werner, Eckert, Jürgen

Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti-Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti-Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti-Nb alloys. In this work, the formation of martensites (α′ and α″) and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α″ martensitically reverts back to β0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase β domain α precipitates and only very limited amounts of α″ martensite form.