Search Results

Now showing 1 - 6 of 6
  • Item
    The elliptic-regularization principle in Lagrangian mechanics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Liero, Matthias; Stefanelli, Ulisse
    We present a novel variational approach to Lagrangian mechanics based on elliptic regularization with respect to time. A class of parameter-dependent global-in-time minimization problems is presented and the convergence of the respective minimizers to the solution of the system of Lagrange's equations is ascertained. Moreover, we extend this perspective to mixed dissipative/nondissipative situations, present a finite time-horizon version of this approach, and provide related Gamma-convergence results. Finally, some discussion on corresponding time-discrete versions of the principle is presented.
  • Item
    Time discretization and Markovian iteration for coupled FBSDEs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Bender, Christian; Zhang, Jianfeng
    In this paper we lay the foundation for a numerical algorithm to simulate high-dimensional coupled FBSDEs under weak coupling or monotonicity conditions. In particular we prove convergence of a time discretization and a Markovian iteration. The iteration differs from standard Picard iterations for FBSDEs in that the dimension of the underlying Markovian process does not increase with the number of iterations. This feature seems to be indispensable for an efficient iterative scheme from a numerical point of view. We finally suggest a fully explicit numerical algorithm and present some numerical examples with up to 10-dimensional state space.
  • Item
    A temperature-dependent phase-field model for phase separation and damage
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Heinemann, Christian; Kraus, Christiane; Rocca, Elisabetta; Rossi, Riccarda
    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature (cf., e.g., [21, 22]), we encompass in the model thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More in particular, we prove the existence of entropic weak solutions, resorting to a solvability concept first introduced in [10] in the framework of Fourier-Navier-Stokes systems and then recently employed in [9, 38] for the study of PDE systems for phase transition and damage. Our global-intime existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.
  • Item
    Entropic solutions to a thermodynamically consistent PDE system for phase transitions and damage
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Rocca, Elisabetta; Rossi, Riccarda
    In this paper we analyze a PDE system modelling (non-isothermal) phase transitions and damage phenomena in thermoviscoelastic materials. The model is thermodynamically consistent: in particular, no small perturbation assumption is adopted, which results in the presence of quadratic terms on the right-hand side of the temperature equation, only estimated in L1. The whole system has a highly nonlinear character. We address the existence of a weak notion of solution, referred to as entropic, where the temperature equation is formulated with the aid of an entropy inequality, and of a total energy inequality. This solvability concept reflects the basic principles of thermomechanics as well as the thermodynamical consistency of the model. It allows us to obtain global-in-time existence theorems without imposing any restriction on the size of the initial data. We prove our results by passing to the limit in a time discretization scheme, carefully tailored to the nonlinear features of the PDE system (with its entropic formulation), and of the a priori estimates performed on it. Our time-discrete analysis could be useful towards the numerical study of this model.
  • Item
    A vanishing viscosity approach to a rate-independent damage model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Knees, Dorothee; Rossi, Riccarda; Zanini, Chiara
    We analyze a rate-independent model for damage evolution in elastic bodies. The central quantities are a stored energy functional and a dissipation functional, which is assumed to be positively homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage variable and the displacements, solutions may have jumps as a function of time. The latter circumstance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical concept of global energetic solution fails to describe accurately the behavior of the system at jumps. Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on arc-length reparameterization. In this way, in the limit we obtain a novel formulation for the rate-independent damage model, which highlights the interplay of viscous and rate-independent effects in the jump regime, and provides a better description of the energetic behavior of the system at jumps.
  • Item
    A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Knees, Dorothee; Rossi, Riccarda; Zanini, Chiara
    This paper focuses on rate-independent damage in elastic bodies. Since the driving energy is nonconvex, solutions may have jumps as a function of time, and in this situation it is known that the classical concept of energetic solutions for rate-independent systems may fail to accurately describe the behavior of the system at jumps. Therefore, we resort to the (by now well-established) vanishing viscosity approach to rate-independent modeling and approximate the model by its viscous regularization. In fact, the analysis of the latter PDE system presents remarkable difficulties, due to its highly nonlinear character. We tackle it by combining a variational approach to a class of abstract doubly nonlinear evolution equations, with careful regularity estimates tailored to this specific system relying on a q-Laplacian type gradient regularization of the damage variable. Hence, for the viscous problem we conclude the existence of weak solutions satisfying a suitable energy-dissipation inequality that is the starting point for the vanishing viscosity analysis. The latter leads to the notion of (weak) parameterized solution to our rate-independent system, which encompasses the in uence of viscosity in the description of the jump regime.