Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Passing to the limit in a Wasserstein gradient flow : from diffusion to reaction

2011, Arnrich, Steffen, Mielke, Alexander, Peletier, Mark A., Savar´e, Giuseppe, Veneroni, Marco

We study a singular-limit problem arising in the modelling of chemical reactions. At finite e>0, the system is described by a Fokker-Planck convection-diffusion equation with a double-well convection potential. This potential is scaled by 1/e, and in the limit eto0, the solution concentrates onto the two wells, resulting into a limiting system that is a pair of ordinary differential equations for the density at the two wells. This convergence has been proved in Peletier, Savaré, and Veneroni, em SIAM Journal on Mathematical Analysis, 42(4):1805--1825, 2010, using the linear structure of the equation. In this paper we re-prove the result by using solely the Wasserstein gradient-flow structure of the system. In particular, we make no use of the linearity, nor of the fact that it is a second-order system. The first key step in this approach is a reformulation of the equation as the minimization of an action functional that captures the propety of being a emphcurve of maximal slope in an integrated form. The second important step is a rescaling of space. Using only the Wasserstein gradient-flow structure, we prove that the sequence of rescaled solutions is pre-compact in an appropriate topology. ...

Loading...
Thumbnail Image
Item

Modelling and simulation of flame cutting for steel plates with solid phases and melting

2019, Arenas Jaén, Manuel J., Hömberg, Dietmar, Lasarzik, Robert, Mikkonen, Pertti, Petzold, ThomasFlame cutting, finite element method, heat equation, phase transitions, transport equation

The goal of this work is to describe in detail a quasi-stationary state model which can be used to deeply understand the distribution of the heat in a steel plate and the changes in the solid phases of the steel and into liquid phase during the flame cutting process. We use a 3D-model similar to previous works from Thiebaud [1] and expand it to consider phases changes, in particular, austenite formation and melting of material. Experimental data is used to validate the model and study its capabilities. Parameters defining the shape of the volumetric heat source and the power density are calibrated to achieve good agreement with temperature measurements. Similarities and differences with other models from literature are discussed.

Loading...
Thumbnail Image
Item

Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient

2019, Druet, Pierre-Étienne, Jüngel, Ansgar

The convective transport in a multicomponent isothermal compressible fluid subject to the mass continuity equations is considered. The velocity is proportional to the negative pressure gradient, according to Darcy?s law, and the pressure is defined by a state equation imposed by the volume extension of the mixture. These model assumptions lead to a parabolic-hyperbolic system for the mass densities. The global-in-time existence of classical and weak solutions is proved in a bounded domain with no-penetration boundary conditions. The idea is to decompose the system into a porous-medium-type equation for the volume extension and transport equations for the modified number fractions. The existence proof is based on parabolic regularity theory, the theory of renormalized solutions, and an approximation of the velocity field.