Search Results

Now showing 1 - 3 of 3
  • Item
    High power, high repetition rate laser-based sources for attosecond science
    (Bristol : IOP Publishing, 2022) Furch, F.J.; Witting, T.; Osolodkov, M.; Schell, F.; Schulz, C.P.; Vrakking, M.J.
    Within the last two decades attosecond science has been established as a novel research field providing insights into the ultrafast electron dynamics that follows a photoexcitation or photoionization process. Enabled by technological advances in ultrafast laser amplifiers, attosecond science has been in turn, a powerful engine driving the development of novel sources of intense ultrafast laser pulses. This article focuses on the development of high repetition rate laser-based sources delivering high energy pulses with a duration of only a few optical cycles, for applications in attosecond science. In particular, a high power, high repetition rate optical parametric chirped pulse amplification system is described, which was developed to drive an attosecond pump-probe beamline targeting photoionization experiments with electron-ion coincidence detection at high acquisition rates.
  • Item
    The Effect of Chirp on Pulse Compression at a Group Velocity Horizon
    (New York, NY : IEEE, 2016) Babushkin, Ihar; Amiranashvili, Shalva; Bree, Carsten; Morgner, Uwe; Steinmeyer, Gunter; Demircan, Ayhan
    Group-velocity matched cross-phase modulation between a fundamental soliton and a dispersive wave packet has been previously suggested for optical switching applications similar to an optical transistor. Moreover, the nonlinear interaction in the resulting group-velocity horizon can be exploited for adiabatic compression of the soliton down into the few-cycle regime. Here, we study the delicate phase- and frequency-matching mechanism of soliton/dispersive wave interaction by controlling the input chirp of the dispersive wave. We demonstrate that such a modification of the dispersive wave can significantly alter the soliton dynamics. In particular, we show that it allows a decrease of the fiber length needed for the best compression and, to some extent, control of the trajectory of the soliton. The mechanism of such an influence is related to the modification of the phase-matching condition between the soliton and dispersive wave.
  • Item
    Femtosecond filamentation by intensity clamping at a Freeman resonance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Hofmann, Michael; Brée, Carsten
    [no abstract available]