Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Transient radiation from a circular string of dipoles excited at superluminal velocity

2014, Arkhipov, Rostislav M., Arkhipov, Mikhail V., Babushkin, Ihar, Tolmachev, Yurii A.

This paper discusses the features of transient radiation from periodic one-dimensional resonant medium excited by ultrashort pulse. The case of circular geometry is considered for the harmonic distribution of the density of the particles along the circle. It is shown that a new frequency component arises in the spectrum of the scattered radiation in addition to the resonance frequency of medium. The new frequency appears both in the case of linear and nonlinear interaction, its value depends on the velocity of excitation pulse propagation and on the period of spatial modulation. In addition, the case when excitation moves at superluminal velocity and Cherenkov radiation arises is also studied.

Loading...
Thumbnail Image
Item

Coherent passive mode-locking in lasers: Qualitative analysis and numerical simulations

2014, Arkhipov, Rostislav M., Babushkin, Ihar, Arkhipov, Mikhail V.

In the present work we report the possibility of passive mode-locking based on the coherent interaction of light with the amplifying and absorbing media in lasers with ring and linear cavities. We consider the realistic and practically interesting case when the absorbing and amplifying media are separated in the cavity space but not homogeneously mixed in the volume of the cavity, as was considered earlier in the literature. We perform qualitative consideration of coherent passive mode-locking based on the area theorem of McCall and Hahn and its graphical representation for the first time. We show that other, not soliton scenarios of passive mode-locking exist, and that coherent mode-locking is self-starting (lasing without an injection seeding pulse is possible). We point to the fact that the spectral width of the laser generation can be significantly larger than the spectral bandwidth of the gain medium. Numerical simulations were performed using the system of Maxwell-Bloch equations in the slowly varying envelope approximation.

Loading...
Thumbnail Image
Item

Transient Cherenkov radiation from an inhomogeneous string excited by an ultrashort laser pulse at superluminal velocity

2013, Arkhipov, Rostislav, Babushkin, Ihar, Lebedev, Mikhail K., Tolmachev, Yurii A., Arkhipov, Mikhail V.

An optical response of one-dimensional string made of dipoles with a periodically varying density excited by a spot of light moving along the string at superluminal (sub-luminal) velocity is studied. We consider in details the spectral and temporal dynamics of the Cherenkov radiation, which occurs in such system in the transient regime. We point out the resonance character of radiation and the appearance of a new Doppler-like frequency in the spectrum of the transient Cherenkov radiation. Possible applications of the effect as well as different string topologies are discussed.

Loading...
Thumbnail Image
Item

Self-starting stable coherent mode-locking in a two-section laser

2014, Arkhipov, Rostislav M., Arkhipov, Mikhail V., Babushkin, Ihar

In the present work we report the possibility of passive mode-locking based on the coherent interaction of light with the amplifying and absorbing media in lasers with ring and linear cavities. We consider the realistic and practically interesting case when the absorbing and amplifying media are separated in the cavity space but not homogeneously mixed in the volume of the cavity, as was considered earlier in the literature. We perform qualitative consideration of coherent passive mode-locking based on the area theorem of McCall and Hahn and its graphical representation for the first time. We show that other, not soliton scenarios of passive mode-locking exist, and that coherent mode-locking is self-starting (lasing without an injection seeding pulse is possible). We point to the fact that the spectral width of the laser generation can be significantly larger than the spectral bandwidth of the gain medium. Numerical simulations were performed using the system of Maxwell-Bloch equations in the slowly varying envelope approximation.