Search Results

Now showing 1 - 4 of 4
  • Item
    Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound
    (Weinheim : Wiley-VCH, 2021) Zhou, Yu; Huo, Shuaidong; Loznik, Mark; Göstl, Robert; Boersma, Arnold J.; Herrmann, Andreas
    Ultrasound (US) produces cavitation-induced mechanical forces stretching and breaking polymer chains in solution. This type of polymer mechanochemistry is widely used for synthetic polymers, but not biomacromolecules, even though US is biocompatible and commonly used for medical therapy as well as in vivo imaging. The ability to control protein activity by US would thus be a major stepping-stone for these disciplines. Here, we provide the first examples of selective protein activation and deactivation by means of US. Using GFP as a model system, we engineer US sensitivity into proteins by design. The incorporation of long and highly charged domains enables the efficient transfer of force to the protein structure. We then use this principle to activate the catalytic activity of trypsin by inducing the release of its inhibitor. We expect that this concept to switch “on” and “off” protein activity by US will serve as a blueprint to remotely control other bioactive molecules. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo
    (Weinheim : Wiley-VCH, 2021) Aziz, Azaam; Holthof, Joost; Meyer, Sandra; Schmidt, Oliver G.; Medina-Sánchez, Mariana
    The fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms has boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic imaging (PAI), considered a functional technique, has shown to be promising for the visualization of micromotors in deep tissue with high spatiotemporal resolution as it possesses the molecular specificity of optical methods and the penetration depth of ultrasound. However, the precise maneuvering and function's control of medical micromotors, in particular in living organisms, require both anatomical and functional imaging feedback. Therefore, herein, the use of high-frequency ultrasound and PAI is reported to obtain anatomical and molecular information, respectively, of magnetically-driven micromotors in vitro and under ex vivo tissues. Furthermore, the steerability of the micromotors is demonstrated by the action of an external magnetic field into the uterus and bladder of living mice in real-time, being able to discriminate the micromotors’ signal from one of the endogenous chromophores by multispectral analysis. Finally, the successful loading and release of a model cargo by the micromotors toward non-invasive in vivo medical interventions is demonstrated. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Exploitation of Ultrasound Technique for Enhancement of Microbial Metabolites Production
    (Basel : MDPI AG, 2020) Behzadnia, Asma; Moosavi-Nasab, Marzieh; Ojha, Shikha; Tiwari, Brijesh K.
    Microbial metabolites have significant impacts on our lives from providing valuable compounds for nutrition to agriculture and healthcare. Ever-growing demand for these natural compounds has led to the need for smart and efficient production techniques. Ultrasound is a multi-applicable technology widely exploited in a range of industries such as chemical, medical, biotechnological, pharmaceutical, and food processes. Depending on the type of ultrasound employed, it can be used to either monitor or drive fermentation processes. Ultrasonication can improve bioproduct productivity via intensifying the performance of living organisms. Controlled ultrasonication can influence the metabolites' biosynthesis efficiency and growth rates by improvement of cell permeability as well as mass transfer and nutrient uptake rates through cell membranes. This review contains a summarized description about suitable microbial metabolites and the applications of ultrasound technique for enhancement of the production of these metabolites as well as the associated downstream processing.
  • Item
    Special issue on “Ultrasound-assisted engineering of materials for biomedical uses”
    (Amsterdam [u.a.] : Elsevier Science, 2022) Besford, Quinn A.; Cavalieri, Francesca
    [no abstract available]