Search Results

Now showing 1 - 2 of 2
  • Item
    Optimal stopping via pathwise dual empirical maximisation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Belomestny, Denis; Hildebrand, Roland; Schoenmakers, John G.M.
    The optimal stopping problem arising in the pricing of American options can be tackled by the so called dual martingale approach. In this approach, a dual problem is formulated over the space of martingales. A feasible solution of the dual problem yields an upper bound for the solution of the original primal problem. In practice, the optimization is performed over a finite-dimensional subspace of martingales. A sample of paths of the underlying stochastic process is produced by a Monte-Carlo simulation, and the expectation is replaced by the empirical mean. As a rule the resulting optimization problem, which can be written as a linear program, yields a martingale such that the variance of the obtained estimator can be large. In order to decrease this variance, a penalizing term can be added to the objective function of the path-wise optimization problem. In this paper, we provide a rigorous analysis of the optimization problems obtained by adding different penalty functions. In particular, a convergence analysis implies that it is better to minimize the empirical maximum instead of the empirical mean. Numerical simulations confirm the variance reduction effect of the new approach.
  • Item
    Oracle complexity separation in convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Ivanova, Anastasiya; Gasnikov, Alexander; Dvurechensky, Pavel; Dvinskikh, Darina; Tyurin, Alexander; Vorontsova, Evgeniya; Pasechnyuk, Dmitry
    Ubiquitous in machine learning regularized empirical risk minimization problems are often composed of several blocks which can be treated using different types of oracles, e.g., full gradient, stochastic gradient or coordinate derivative. Optimal oracle complexity is known and achievable separately for the full gradient case, the stochastic gradient case, etc. We propose a generic framework to combine optimal algorithms for different types of oracles in order to achieve separate optimal oracle complexity for each block, i.e. for each block the corresponding oracle is called the optimal number of times for a given accuracy. As a particular example, we demonstrate that for a combination of a full gradient oracle and either a stochastic gradient oracle or a coordinate descent oracle our approach leads to the optimal number of oracle calls separately for the full gradient part and the stochastic/coordinate descent part.