Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Outer limit of subdifferentials and calmness moduli in linear and nonlinear programming

2015, Cánovas, María J., Henrion, René, López, Marco A., Parra, Juan

With a common background and motivation, the main contributions of this paper are developed in two different directions. Firstly, we are concerned with functions which are the maximum of a finite amount of continuously differentiable functions of n real variables, paying attention to the case of polyhedral functions. For these max-functions, we obtain some results about outer limits of subdifferentials, which are applied to derive an upper bound for the calmness modulus of nonlinear systems. When confined to the convex case, in addition, a lower bound on this modulus is also obtained. Secondly, by means of a KKT index set approach, we are also able to provide a point-based formula for the calmness modulus of the argmin mapping of linear programming problems without any uniqueness assumption on the optimal set. This formula still provides a lower bound in linear semi-infinite programming. Illustrative examples are given.

Loading...
Thumbnail Image
Item

Routeing properties in a Gibbsian model for highly dense multihop networks

2017, König, Wolfgang, Tóbiás, András

We investigate a probabilistic model for routeing in a multihop ad-hoc communication network, where each user sends a message to the base station. Messages travel in hops via the other users, used as relays. Their trajectories are chosen at random according to a Gibbs distribution that favours trajectories with low interference, measured in terms of sum of the signal-to-interference ratios for all the hops, and collections of trajectories with little total congestion, measured in terms of the number of pairs of hops arriving at each relay. This model was introduced in our earlier paper [KT17], where we expressed, in the high-density limit, the distribution of the optimal trajectories as the minimizer of a characteristic variational formula. In the present work, in the special case in which congestion is not penalized, we derive qualitative properties of this minimizer. We encounter and quantify emerging typical pictures in analytic terms in three extreme regimes. We analyze the typical number of hops and the typical length of a hop, and the deviation of the trajectory from the straight line in two regimes, (1) in the limit of a large communication area and large distances, and (2) in the limit of a strong interference weight. In both regimes, the typical trajectory turns out to quickly approach a straight line, in regime (1) with equally-sized hops. Surprisingly, in regime (1), the typical length of a hop diverges logarithmically as the distance of the transmitter to the base station diverges. We further analyze the local and global repulsive effect of (3) a densely populated area on the trajectories. Our findings are illustrated by numerical examples. We also discuss a game-theoretic relation of our Gibbsian model with a joint optimization of message trajectories opposite to a selfish optimization, in case congestion is also penalized.

Loading...
Thumbnail Image
Item

Moment asymptotics for multitype branching random walks in random environment

2013, Gün, Onur, König, Wolfgang, Sekulovic, Ozren

We study a discrete time multitype branching random walk on a finite space with finite set of types. Particles follow a Markov chain on the spatial space whereas offspring distributions are given by a random field that is fixed throughout the evolution of the particles. Our main interest lies in the averaged (annealed) expectation of the population size, and its long-time asymptotics. We first derive, for fixed time, a formula for the expected population size with fixed offspring distributions, which is reminiscent of a Feynman-Kac formula. We choose Weibull-type distributions with parameter 1/pij for the upper tail of the mean number of j type particles produced by an i type particle. We derive the first two terms of the long-time asymptotics, which are written as two coupled variational formulas, and interpret them in terms of the typical behavior of the system.

Loading...
Thumbnail Image
Item

Optimal control of the sweeping process over polyhedral controlled sets

2015, Colombo, Giovanni, Henrion, René, Hoang, Nguyen D., Mordukhovich, Boris S.

The paper addresses a new class of optimal control problems governed by the dissipative and discontinuous differential inclusion of the sweeping/Moreau process while using controls to determine the best shape of moving convex polyhedra in order to optimize the given Bolza-type functional, which depends on control and state variables as well as their velocities. Besides the highly non-Lipschitzian nature of the unbounded differential inclusion of the controlled sweeping process, the optimal control problems under consideration contain intrinsic state constraints of the inequality and equality types. All of this creates serious challenges for deriving necessary optimality conditions. We develop here the method of discrete approximations and combine it with advanced tools of first-order and second-order variational analysis and generalized differentiation. This approach allows us to establish constructive necessary optimality conditions for local minimizers of the controlled sweeping process expressed entirely in terms of the problem data under fairly unrestrictive assumptions. As a by-product of the developed approach, we prove the strong W1;2-convergence of optimal solutions of discrete approximations to a given local minimizer of the continuous-time system and derive necessary optimality conditions for the discrete counterparts. The established necessary optimality conditions for the sweeping process are illustrated by several examples.

Loading...
Thumbnail Image
Item

Optimal control of the sweeping process

2011, Colombo, Giovanni, Henrion, René, Hoang, Nguyen D., Mordukhovich, Borils S.

We formulate and study an optimal control problem for the sweeping (Moreau) process, where control functions enter the moving sweeping set. To the best of our knowledge, this is the first study in the literature devoted to optimal control of the sweeping process. We first establish an existence theorem of optimal solutions and then derive necessary optimality conditions for this optimal control problem of a new type, where the dynamics is governed by discontinuous differential inclusions with variable right-hand sides. Our approach to necessary optimality conditions is based on the method of discrete approximations and advanced tools of variational analysis and generalized differentiation. The final results obtained are given in terms of the initial data of the controlled sweeping process and are illustrated by nontrivial examples.