Search Results

Now showing 1 - 7 of 7
  • Item
    Combining Hydrophilic and Hydrophobic Materials in 3D Printing for Fabricating Microfluidic Devices with Spatial Wettability
    (Weinheim : Wiley, 2021) Männel, Max J.; Weigel, Niclas; Hauck, Nicolas; Heida, Thomas; Thiele, Julian
    The fabrication of microfluidic flow cells via projection micro-stereolithography (PμSL) has excited researchers in recent years. However, due to the inherent process properties of most commercial PμSL, microfluidic devices are fabricated in a monolithic fashion with uniform material properties across a flow cell. Yet, the large surface-to-volume ratio in microfluidics demands to tailor microchannel surface properties—particularly in planar microchannel arrangements—with spatial control and micron-scale resolution to form a desired flow profile, e.g., emulsion droplets. Here, the fabrication of planar microfluidic devices by PμSLbased 3D printing with spatial control over surface properties is presented. For that, homemade photopolymer formulations being either hydrophilic or hydrophobic are designed. Adding acrylic acid to a resin containing poly(ethylene glycol) diacrylate lowers the contact angle down to 0° against water creating a superhydrophilic surface. By utilizing 1H,1H,2H,2H-perfluorodecyl acrylate, a photopolymer formulation allowing for 3D-printing a hydrophobic microchannel surface with a contact angle >120° against water is obtained. Combining these two materials, microfluidic flow cells with spatially defined wettability are 3D-printed for emulsion formation. Finally, the resin vat of the commercial PμSL printer is switched during the printing process for fabricating multimaterial geometries, as exemplarily applied for realizing a hydrophobic-hydrophilic-hydrophobic device for forming O/W/O double emulsions.
  • Item
    Wettability and reactivity of ZrB2 substrates with liquid Al
    (Heidelberg : Springer, 2016) Nowak, R.; Sobczak, N.; Bruzda, G.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Homa, M.; Kaban, I.; Xi, L.; Jaworska, L.
    Wetting characteristics of the Al/ZrB2 system were experimentally determined by the sessile drop method with application of separate heating of the ZrB2 and Al samples and combined with in situ cleaning of Al drop from native oxide film directly in vacuum chamber. The tests were performed in ultrahigh vacuum of 10−6 mbar at temperatures 710, 800, and 900 °C as well as in flowing inert gas (Ar) atmosphere at 1400 °C. The results evidenced that liquid Al does not wet ZrB2 substrate at 710 and 800 °C, forming high contact angles (θ) of 128° and 120°, respectively. At 900 °C, wetting phenomenon (θ < 90°) occurs in 29th minute and the contact angle decreases monotonically to the final value of 80°. At 1400 °C, wetting takes place immediately after drop deposition with a fast decrease in the contact angle to 76°. The solidified Al/ZrB2 couples were studied by scanning and transmission electron microscopy coupled with x-ray energy diffraction spectroscopy. Structural characterization revealed that only in the Al/ZrB2 couple produced at the highest temperature of 1400 °C new phases (Al3Zr, AlB2 and α-Al2O3) were formed.
  • Item
    High-Temperature Interaction of Liquid Gd with Y2O3
    (New York, NY : Springer, 2019) Turalska, P.; Sobczak, N.; Bruzda, G.; Kaban, I.; Mattern, N.
    The sessile drop method combined with contact heating procedure was applied for the investigation of high-temperature interaction between liquid Gd and Y2O3 substrate. Real-time behavior of Gd sample in flowing inert gas (Ar) atmosphere upon heating to and at temperature of 1362 °C was recorded using high-speed high-resolution CCD camera. The results evidenced that molten Gd wets Y2O3 substrate (the contact angle θ < 90°) immediately after melting of metal sample observed at T = 1324 °C (Tm = 1312 °C). During the first 3 min of the sessile drop test, the contact angle dropped from θ = 52° to θ = 24° and then stabilized at the final value of θf * = 33°. The solidified Gd/Y2O3 couple was subjected to structural characterization using optical microscopy, scanning electron microscopy coupled with x-ray energy-dispersive spectroscopy. The results evidenced that the wettability in the Gd/Y2O3 system has a reactive nature and the leading mechanism of the interaction between liquid Gd and Y2O3 is the dissolution of the ceramic in the liquid metal responsible for the formation of a deep crater in the substrate under the drop. Therefore, the final contact angle θf*, estimated from the side-view drop image, should be considered as an apparent value, compared to the more reliable value of θf = 70° measured on the cross section of the solidified couple. © 2019, The Author(s).
  • Item
    Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces
    ([London] : Nature Publishing Group UK, 2017) Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
    Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.
  • Item
    Determination of interfacial parameters of a soluble particle in a nonideal solution from measured deliquescence and efflorescence humidities
    (München : European Geopyhsical Union, 2015) Hellmuth, O.; Shchekin, A.K.
    In order to study the growth/shrinking of a hygroscopic nanoparticle during hydration/dehydration in an atmosphere of water vapour, we have employed a thermodynamic approach proposed by Shchekin et al. (2008). This approach uses the mechanic and thermodynamic concept of disjoining pressure of thin films and allows, among others, the prediction of the humidity growth factor of both (i) a homogeneous solution droplet with completely dissolved residual core and (ii) a heterogeneous solution droplet with partially dissolved residual core as a function of the ambient relative humidity. For application to a nanometric sodium chloride particle we have extended the original approach by (i) considering the nonideality of the solution through the dependence of molecular volumes of the solvent and solute molecules and the solute and solvent activities on the solution concentration, (ii) deriving an equation for the estimation of the efflorescence properties of a homogeneous solution droplet, and (iii) combining the empirical power law fittings for the size dependence of the deliquescence and efflorescence relative humidity values by Biskos et al. (2006a). It was demonstrated how the solution/solute interface energy and the correlation length of a thin solution film can be determined from a combination of experimentally determinable efflorescence and deliquescence humidities with the present calculus. The solution/solute interface energy was found to be in close agreement with some previous values reported in the literature, while it strongly differs from data of some other sources. The calculated deliquescence humidity shows a low sensitivity to the choice of the numerical value for the film correlation length. The estimated film correlation length of 1 nm for a nanometric sodium chloride particle with dry particle radius of 5 nm was found to be reconcilable with available a priori estimates of the correlation length from the literature when the measurement uncertainty of the deliquescence humidity is considered. Considering the combination of an extensive calculus, a comprehensive set of thermophysical constraints, and independent measurements of the deliquescence and efflorescence humidities as functions of dry particle radius, the obtained values of the solution/solute interface energy and the correlation length are in close agreement with previous estimations. The humidification of sodium chloride particles in the initial hydration stages was found to be very sensitive to the specification of the disjoining pressure. The enhancement of the wettability of the particle surface leads to an earlier onset of hygroscopic growth.
  • Item
    Enhancement of Intracellular Calcium Ion Mobilization by Moderately but Not Highly Positive Material Surface Charges
    (Lausanne : Frontiers Media, 2020) Gruening, Martina; Neuber, Sven; Nestler, Peter; Lehnfeld, Jutta; Dubs, Manuela; Fricke, Katja; Schnabelrauch, Matthias; Helm, Christiane A.; Müller, Rainer; Staehlke, Susanne; Nebe, J. Barbara
    Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between −90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (−90 to −3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials’ zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery. © Copyright © 2020 Gruening, Neuber, Nestler, Lehnfeld, Dubs, Fricke, Schnabelrauch, Helm, Müller, Staehlke and Nebe.
  • Item
    Surface modification of the laser sintering standard powder polyamide 12 by plasma treatments
    (Weinheim : Wiley-VCH, 2018-6-7) Almansoori, Alaa; Masters, Robert; Abrams, Kerry; Schäfer, Jan; Gerling, Torsten; Majewski, Candice; Rodenburg, Cornelia
    Polyamide 12 (PA12) powder was exposed for up to 3 h to low pressure air plasma treatment (LP-PT) and several minutes by two different atmospheric pressure plasma jets (APPJ) i.e., kINPen (K-APPJ) and Hairline (H-APPJ). The chemical and physical changes resulting from LP-PT were observed by a combination of Scanning Electron Microscopy (SEM), Hot Stage Microscopy (HSM) and Fourier transform infrared spectroscopy (FTIR), which demonstrated significant changes between the plasma treated and untreated PA12 powders. PA12 exposed to LP-PT showed an increase in wettability, was relatively porous, and possessed a higher density, which resulted from the surface functionalization and materials removal during the plasma exposure. However, it showed poor melt behavior under heating conditions typical for Laser Sintering. In contrast, brief PJ treatments demonstrated similar changes in porosity, but crucially, retained the favorable melt characteristics of PA12 powder.