Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

On the Promotion of Catalytic Reactions by Surface Acoustic Waves

2020, von Boehn, Bernhard, Foerster, Michael, von Boehn, Moritz, Prat, Jordi, Macià, Ferran, Casals, Blai, Khaliq, Muhammad Waqas, Hernández-Mínguez, Alberto, Aballe, Lucia, Imbihl, Ronald

Surface acoustic waves (SAW) allow to manipulate surfaces with potential applications in catalysis, sensor and nanotechnology. SAWs were shown to cause a strong increase in catalytic activity and selectivity in many oxidation and decomposition reactions on metallic and oxidic catalysts. However, the promotion mechanism has not been unambiguously identified. Using stroboscopic X-ray photoelectron spectro-microscopy, we were able to evidence a sub-nanosecond work function change during propagation of 500 MHz SAWs on a 9 nm thick platinum film. We quantify the work function change to 455 μeV. Such a small variation rules out that electronic effects due to elastic deformation (strain) play a major role in the SAW-induced promotion of catalysis. In a second set of experiments, SAW-induced intermixing of a five monolayers thick Rh film on top of polycrystalline platinum was demonstrated to be due to enhanced thermal diffusion caused by an increase of the surface temperature by about 75 K when SAWs were excited. Reversible surface structural changes are suggested to be a major cause for catalytic promotion. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Correlation of Work Function and Conformation of C80 Endofullerenes on h-BN/Ni(111)

2024, Stania, Roland, Seitsonen, Ari Paavo, Jung, Hyunjin, Kunhardt, David, Popov, Alexey A., Muntwiler, Matthias, Greber, Thomas

Change of conformation or polarization of molecules is an expression of their functionality. If the two correlate, electric fields can change the conformation. In the case of endofullerene single-molecule magnets the conformation is linked to an electric and a magnetic dipole moment, and therefore magnetoelectric effects are envisoned. The interface system of one monolayer Sc2TbN@C80 on hexagonal boron nitride (h-BN) on Ni(111) has been studied. The molecular layer is hexagonally close packedbut incommensurate. With photoemission the polarization and the conformation of the molecules are addressed by the work function and angular intensity distributions. Valence band photoemission (ARPES) shows a temperature-induced energy shift of the C80 molecular orbitals that is parallel to a change in work function of 0.25 eV without charging the molecules. ARPES indicates a modification in molecular conformations between 30 and 300 K. This order–disorder transition involves a polarization change in the interface and is centered at 125 K as observed with high-resolution X-ray photoelectron spectroscopy (XPS). The temperature dependence is described with a thermodynamic model that accounts for disordering with an excitation energy of 74 meV into a high entropy ensemble. All experimental results are supported by density functional theory (DFT).