Search Results

Now showing 1 - 10 of 334
Loading...
Thumbnail Image
Item

Phonon driven charge dynamics in polycrystalline acetylsalicylic acid mapped by ultrafast x-ray diffraction

2019, Hauf, Christoph, Hernandez Salvador, Antonio-Andres, Holtz, Marcel, Woerner, Michael, Elsaesser, Thomas

The coupled lattice and charge dynamics induced by phonon excitation in polycrystalline acetylsalicylic acid (aspirin) are mapped by femtosecond x-ray powder diffraction. The hybrid-mode character of the 0.9 ± 0.1 THz methyl rotation in the aspirin molecules is evident from collective charge relocations over distances of some 100 pm, much larger than the sub-picometer nuclear displacements. Oscillatory charge relocations around the methyl group generate a torque on the latter, thus coupling electronic and nuclear motions.

Loading...
Thumbnail Image
Item

Enhanced tenacity of mycobacterial aerosols from necrotic neutrophils

2020, Pfrommer, E., Dreier, C., Gabriel, G., Dallenga, T., Reimer, R., Schepanski, K., Scherließ, R., Schaible, U.E., Gutsmann, T.

The tuberculosis agent Mycobacterium tuberculosis is primarily transmitted through air, but little is known about the tenacity of mycobacterium-containing aerosols derived from either suspensions or infected neutrophils. Analysis of mycobacterial aerosol particles generated from bacterial suspensions revealed an average aerodynamic diameter and mass density that may allow distant airborne transmission. The volume and mass of mycobacterial aerosol particles increased with elevated relative humidity. To more closely mimic aerosol formation that occurs in active TB patients, aerosols from mycobacterium-infected neutrophils were analysed. Mycobacterium-infected intact neutrophils showed a smaller particle size distribution and lower viability than free mycobacteria. In contrast, mycobacterium-infected necrotic neutrophils, predominant in M. tuberculosis infection, revealed particle sizes and viability rates similar to those found for free mycobacteria, but in addition, larger aggregates of viable mycobacteria were observed. Therefore, mycobacteria are shielded from environmental stresses in multibacillary aggregates generated from necrotic neutrophils, which allows improved tenacity but emphasizes short distance transmission between close contacts.

Loading...
Thumbnail Image
Item

Giant refractometric sensitivity by combining extreme optical Vernier effect and modal interference

2020, Gomes, André D., Kobelke, Jens, Bierlich, Jörg, Dellith, Jan, Rothhardt, Manfred, Bartelt, Hartmut, Frazão, Orlando

The optical Vernier effect consists of overlapping responses of a sensing and a reference interferometer with slightly shifted interferometric frequencies. The beating modulation thus generated presents high magnified sensitivity and resolution compared to the sensing interferometer, if the two interferometers are slightly out of tune with each other. However, the outcome of such a condition is a large beating modulation, immeasurable by conventional detection systems due to practical limitations of the usable spectral range. We propose a method to surpass this limitation by using a few-mode sensing interferometer instead of a single-mode one. The overlap response of the different modes produces a measurable envelope, whilst preserving an extremely high magnification factor, an order of magnification higher than current state-of-the-art performances. Furthermore, we demonstrate the application of that method in the development of a giant sensitivity fibre refractometer with a sensitivity of around 500 µm/RIU (refractive index unit) and with a magnification factor over 850.

Loading...
Thumbnail Image
Item

Discovery of chitin in skeletons of non-verongiid Red Sea demosponges

2018, Ehrlich, Hermann, Shaala, Lamiaa A., Youssef, Diaa T. A., Żółtowska- Aksamitowska, Sonia, Tsurkan, Mikhail, Galli, Roberta, Meissner, Heike, Wysokowski, Marcin, Petrenko, Iaroslav, Tabachnick, Konstantin R., Ivanenko, Viatcheslav N., Bechmann, Nicole, Joseph, Yvonne, Jesionowski, Teofil

Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.

Loading...
Thumbnail Image
Item

Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100

2020, Hänsel, Martin C., Schmidt, Jörn O., Stiasny, Martina H., Stöven, Max T., Voss, Rudi, Quaas, Martin F.

The Arctic Ocean is an early warning system for indicators and effects of climate change. We use a novel combination of experimental and time-series data on effects of ocean warming and acidification on the commercially important Northeast Arctic cod (Gadus morhua) to incorporate these physiological processes into the recruitment model of the fish population. By running an ecological-economic optimization model, we investigate how the interaction of ocean warming, acidification and fishing pressure affects the sustainability of the fishery in terms of ecological, economic, social and consumer-related indicators, ranging from present day conditions up to future climate change scenarios. We find that near-term climate change will benefit the fishery, but under likely future warming and acidification this large fishery is at risk of collapse by the end of the century, even with the best adaptation effort in terms of reduced fishing pressure.

Loading...
Thumbnail Image
Item

Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction

2020, Li, Tianming, Bandari, Vineeth Kumar, Hantusch, Martin, Xin, Jianhui, Kuhrt, Robert, Ravishankar, Rachappa, Xu, Longqian, Zhang, Jidong, Knupfer, Martin, Zhu, Feng, Yan, Donghang, Schmidt, Oliver G.

Considerable efforts have been made to realize nanoscale diodes based on single molecules or molecular ensembles for implementing the concept of molecular electronics. However, so far, functional molecular diodes have only been demonstrated in the very low alternating current frequency regime, which is partially due to their extremely low conductance and the poor degree of device integration. Here, we report about fully integrated rectifiers with microtubular soft-contacts, which are based on a molecularly thin organic heterojunction and are able to convert alternating current with a frequency of up to 10 MHz. The unidirectional current behavior of our devices originates mainly from the intrinsically different surfaces of the bottom planar and top microtubular Au electrodes while the excellent high frequency response benefits from the charge accumulation in the phthalocyanine molecular heterojunction, which not only improves the charge injection but also increases the carrier density.

Loading...
Thumbnail Image
Item

Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2

2020, Stahl, Quirin, Kusch, Maximilian, Heinsch, Florian, Garbarino, Gaston, Kretzschmar, Norman, Hanff, Kerstin, Rossnagel, Kai, Geck, Jochen, Ritschel, Tobias

Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals.

Loading...
Thumbnail Image
Item

Evaluating spatially resolved influence of soil and tree water status on quality of European plum grown in semi-humid climate

2017, Käthner, Jana, Ben-Gal, Alon, Gebbers, Robin, Peeters, Aviva, Herppich, Werner B., Zude-Sasse, Manuela

In orchards, the variations of fruit quality and its determinants are crucial for resource effective measures. In the present study, a drip-irrigated plum production (Prunus domestica L. “Tophit plus”/Wavit) located in a semi-humid climate was studied. Analysis of the apparent electrical conductivity (ECa) of soil showed spatial patterns of sand lenses in the orchard. Water status of sample trees was measured instantaneously by means of leaf water potential, Ψleaf [MPa], and for all trees by thermal imaging of canopies and calculation of the crop water stress index (CWSI). Methods for determining CWSI were evaluated. A CWSI approach calculating canopy and reference temperatures from the histogram of pixels from each image itself was found to suit the experimental conditions. Soil ECa showed no correlation with specific leaf area ratio and cumulative water use efficiency (WUEc) derived from the crop load. The fruit quality, however, was influenced by physiological drought stress in trees with high crop load and, resulting (too) high WUEc, when fruit driven water demand was not met. As indicated by analysis of variance, neither ECa nor the instantaneous CWSI could be used as predictors of fruit quality, while the interaction of CWSI and WUEc did succeed in indicating significant differences. Consequently, both WUEc and CWSI should be integrated in irrigation scheduling for positive impact on fruit quality.

Loading...
Thumbnail Image
Item

Probing multiphoton light-induced molecular potentials

2020, Kübel, M., Spanner, M., Dube, Z., Naumov, A.Yu., Chelkowski, S., Bandrauk, A.D., Vrakking, M.J.J., Corkum, P.B., Villeneuve, D.M., Staudte, A.

The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior. In the laser-induced dissociation of H2+, the simplest of molecules, we measure a strongly modulated angular distribution of protons which has escaped prior observation. Using two-color Floquet theory, we show that the modulations result from ultrafast dynamics on light-induced molecular potentials. These potentials are shaped by the amplitude, duration and phase of the dressing fields, allowing for manipulating the dissociation dynamics of small molecules.

Loading...
Thumbnail Image
Item

On deeper human dimensions in Earth system analysis and modelling

2018, Gerten, Dieter, Schönfeld, Martin, Schauberger, Bernhard

While humanity is altering planet Earth at unprecedented magnitude and speed, representation of the cultural driving factors and their dynamics in models of the Earth system is limited. In this review and perspectives paper, we argue that more or less distinct environmental value sets can be assigned to religion – a deeply embedded feature of human cultures, here defined as collectively shared belief in something sacred. This assertion renders religious theories, practices and actors suitable for studying cultural facets of anthropogenic Earth system change, especially regarding deeper, non-materialistic motivations that ask about humans' self-understanding in the Anthropocene epoch. We sketch a modelling landscape and outline some research primers, encompassing the following elements: (i) extensions of existing Earth system models by quantitative relationships between religious practices and biophysical processes, building on databases that allow for (mathematical) formalisation of such knowledge; (ii) design of new model types that specifically represent religious morals, actors and activities as part of co-evolutionary human–environment dynamics; and (iii) identification of research questions of humanitarian relevance that are underrepresented in purely economic–technocratic modelling and scenario paradigms. While this analysis is by necessity heuristic and semi-cohesive, we hope that it will act as a stimulus for further interdisciplinary and systematic research on the immaterial dimension of humanity's imprint on the Earth system, both qualitatively and quantitatively.