Search Results

Now showing 1 - 8 of 8
  • Item
    A new scenario framework for climate change research: The concept of shared climate policy assumptions
    (Heidelberg : Springer, 2014) Kriegler, Elmar; Edmonds, Jae; Hallegatte, Stéphane; Ebi, Kristie L.; Kram, Tom; Riahi, Keywan; Winkler, Harald; van Vuuren, Detlef P.
    The new scenario framework facilitates the coupling of multiple socioeconomic reference pathways with climate model products using the representative concentration pathways. This will allow for improved assessment of climate impacts, adaptation and mitigation. Assumptions about climate policy play a major role in linking socioeconomic futures with forcing and climate outcomes. The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key policy attributes such as the goals, instruments and obstacles of mitigation and adaptation measures, and introduce an important additional dimension to the scenario matrix architecture. They can be used to improve the comparability of scenarios in the scenario matrix. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.
  • Item
    Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century
    (Amsterdam : Elsevier, 2016) Kriegler, Elmar; Bauer, Nico; Popp, Alexander; Humpenöder, Florian; Leimbach, Marian; Strefler, Jessica; Baumstark, Lavinia; Bodirsky, Benjamin Leon; Hilaire, Jérôme; Klein, David; Mouratiadou, Ioanna; Weindl, Isabelle; Bertram, Christoph; Dietrich, Jan-Philipp; Luderer, Gunnar; Pehl, Michaja; Pietzcker, Robert; Piontek, Franziska; Lotze-Campen, Hermann; Biewald, Anne; Bonsch, Markus; Giannousakis, Anastasis; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Schultes, Anselm; Schwanitz, Jana; Stevanovic, Miodrag; Calvin, Katherine; Emmerling, Johannes; Fujimori, Shinichiro; Edenhofer, Ottmar
    This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.
  • Item
    Future growth patterns of world regions – A GDP scenario approach
    (Amsterdam : Elsevier, 2015) Leimbach, Marian; Kriegler, Elmar; Roming, Niklas; Schwanitz, Jana
    Global GDP projections for the 21st century are needed for the exploration of long-term global environmental problems, in particular climate change. Greenhouse gas emissions as well as climate change mitigation and adaption capacities strongly depend on growth of per capita income. However, long-term economic projections are highly uncertain. This paper provides five new long-term economic scenarios as part of the newly developed shared socio-economic pathways (SSPs) which represent a set of widely diverging narratives. A method of GDP scenario building is presented that is based on assumptions about technological progress, and human and physical capital formation as major drivers of long-term GDP per capita growth. The impact of these drivers differs significantly between different shared socio-economic pathways and is traced back to the underlying narratives and the associated population and education scenarios. In a highly fragmented world, technological and knowledge spillovers are low. Hence, the growth impact of technological progress and human capital is comparatively low, and per capita income diverges between world regions. These factors play a much larger role in globalization scenarios, leading to higher economic growth and stronger convergence between world regions. At the global average, per capita GDP is projected to grow annually in a range between 1.0% (SSP3) and 2.8% (SSP5) from 2010 to 2100. While this covers a large portion of variety in future global economic growth projections, plausible lower and higher growth projections may still be conceivable. The GDP projections are put into the context of historic patterns of economic growth (stylized facts), and their sensitivity to key assumptions is explored.
  • Item
    Evaluating process-based integrated assessment models of climate change mitigation
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Wilson, Charlie; Guivarch, Céline; Kriegler, Elmar; van Ruijven, Bas; van Vuuren, Detlef P.; Krey, Volker; Schwanitz, Valeria Jana; Thompson, Erica L.
    Process-based integrated assessment models (IAMs) project long-term transformation pathways in energy and land-use systems under what-if assumptions. IAM evaluation is necessary to improve the models’ usefulness as scientific tools applicable in the complex and contested domain of climate change mitigation. We contribute the first comprehensive synthesis of process-based IAM evaluation research, drawing on a wide range of examples across six different evaluation methods including historical simulations, stylised facts, and model diagnostics. For each evaluation method, we identify progress and milestones to date, and draw out lessons learnt as well as challenges remaining. We find that each evaluation method has distinctive strengths, as well as constraints on its application. We use these insights to propose a systematic evaluation framework combining multiple methods to establish the appropriateness, interpretability, credibility, and relevance of process-based IAMs as useful scientific tools for informing climate policy. We also set out a programme of evaluation research to be mainstreamed both within and outside the IAM community.
  • Item
    Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Bauer, Nico; Klein, David; Humpenöder, Florian; Kriegler, Elmar; Luderer, Gunnar; Popp, Alexander; Strefler, Jessica
    Biomass feedstocks can be used to substitute fossil fuels and effectively remove carbon from the atmosphere to offset residual CO2 emissions from fossil fuel combustion and other sectors. Both features make biomass valuable for climate change mitigation; therefore, CO2 emission mitigation leads to complex and dynamic interactions between the energy and the land-use sector via emission pricing policies and bioenergy markets. Projected bioenergy deployment depends on climate target stringency as well as assumptions about context variables such as technology development, energy and land markets as well as policies. This study investigates the intra- and intersectorial effects on physical quantities and prices by coupling models of the energy (REMIND) and land-use sector (MAgPIE) using an iterative soft-link approach. The model framework is used to investigate variations of a broad set of context variables, including the harmonized variations on bioenergy technologies of the 33rd model comparison study of the Stanford Energy Modeling Forum (EMF-33) on climate change mitigation and large scale bioenergy deployment. Results indicate that CO2 emission mitigation triggers strong decline of fossil fuel use and rapid growth of bioenergy deployment around midcentury (~ 150 EJ/year) reaching saturation towards end-of-century. Varying context variables leads to diverse changes on mid-century bioenergy markets and carbon pricing. For example, reducing the ability to exploit the carbon value of bioenergy increases bioenergy use to substitute fossil fuels, whereas limitations on bioenergy supply shift bioenergy use to conversion alternatives featuring higher carbon capture rates. Radical variations, like fully excluding all technologies that combine bioenergy use with carbon removal, lead to substantial intersectorial effects by increasing bioenergy demand and increased economic pressure on both sectors. More gradual variations like selective exclusion of advanced bioliquid technologies in the energy sector or changes in diets mostly lead to substantial intrasectorial reallocation effects. The results deepen our understanding of the land-energy nexus, and we discuss the importance of carefully choosing variations in sensitivity analyses to provide a balanced assessment. © 2020, The Author(s).
  • Item
    Land-use futures in the shared socio-economic pathways
    (Amsterdam [u.a.] : Elsevier, 2017) Popp, Alexander; Calvin, Katherine; Fujimori, Shinichiro; Havlik, Petr; Humpenöder, Florian; Stehfest, Elke; Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Doelmann, Jonathan C.; Gusti, Mykola; Hasegawa, Tomoko; Kyle, Page; Obersteiner, Michael; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Waldhoff, Stephanie; Weindl, Isabelle; Wise, Marshall; Kriegler, Elmar; Lotze-Campen, Hermann; Fricko, Oliver; Riahi, Keywan; Vuuren, Detlef P. van
    In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis. © 2016 The Authors
  • Item
    The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview
    (Amsterdam : Elsevier, 2016) Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O’Neill, Brian C.; Fujimori, Shinichiro; Bauer, Nico; Calvin, Katherine; Dellink, Rob; Fricko, Oliver; Lutz, Wolfgang; Popp, Alexander; Crespo Cuaresma, Jesus; KC, Samir; Leimbach, Marian; Jiang, Leiwen; Kram, Tom; Rao, Shilpa; Emmerling, Johannes; Ebi, Kristie; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Aleluia Da Silva, Lara; Smith, Steve; Stehfest, Elke; Bosetti, Valentina; Eom, Jiyong; Gernaat, David; Masui, Toshihiko; Rogelj, Joeri; Strefler, Jessica; Drouet, Laurent; Krey, Volker; Luderer, Gunnar; Harmsen, Mathijs; Takahashi, Kiyoshi; Baumstark, Lavinia; Doelman, Jonathan C.; Kainuma, Mikiko; Klimont, Zbigniew; Marangoni, Giacomo; Lotze-Campen, Hermann; Obersteiner, Michael; Tabeau, Andrzej; Tavoni, Massimo
    This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
  • Item
    Is atmospheric carbon dioxide removal a game changer for climate change mitigation?
    (Heidelberg : Springer, 2013) Kriegler, Elmar; Edenhofer, Ottmar; Reuster, Lena; Luderer, Gunnar; Klein, David
    The ability to directly remove carbon dioxide from the atmosphere allows the decoupling of emissions and emissions control in space and time. We ask the question whether this unique feature of carbon dioxide removal technologies fundamentally alters the dynamics of climate mitigation pathways. The analysis is performed in the coupled energy-economy-climate model ReMIND using the bioenergy with CCS route as an application of CDR technology. BECCS is arguably the least cost CDR option if biomass availability is not a strongly limiting factor. We compare mitigation pathways with and without BECCS to explore the impact of CDR technologies on the mitigation portfolio. Effects are most pronounced for stringent climate policies where BECCS is a key technology for the effectiveness of carbon pricing policies. The decoupling of emissions and emissions control allows prolonging the use of fossil fuels in sectors that are difficult to decarbonize, particularly in the transport sector. It also balances the distribution of mitigation costs across future generations. CDR is not a silver bullet technology. The largest part of emissions reductions continues to be provided by direct mitigation measures at the emissions source. The value of CDR lies in its flexibility to alleviate the most costly constraints on mitigating emissions.