Search Results

Now showing 1 - 10 of 53
  • Item
    Improving the use of crop models for risk assessment and climate change adaptation
    (Amsterdam : Elsevier, 2017) Challinor, Andrew J.; Müller, Christoph; Asseng, Senthold; Deva, Chetan; Nicklin, Kathryn Jane; Wallach, Daniel; Vanuytrecht, Eline; Whitfield, Stephen; Ramirez-Villegas, Julian; Koehler, Ann-Kristin
    Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1. Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk? 2. Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output. 3. Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions underlying these ranges are not always clear. We suggest that the contingency of results upon assumptions is made explicit via a common uncertainty reporting format; and/or that studies are assessed against a set of criteria, such as those presented in this paper.
  • Item
    Freshwater resources under success and failure of the Paris climate agreement
    (Göttingen : Copernicus Publ., 2019) Heinke, Jens; Müller, Christoph; Lannerstad, Mats; Gerten, Dieter; Lucht, Wolfgang
    Population growth will in many regions increase the pressure on water resources and likely increase the number of people affected by water scarcity. In parallel, global warming causes hydrological changes which will affect freshwater supply for human use in many regions. This study estimates the exposure of future population to severe hydrological changes relevant from a freshwater resource perspective at different levels of global mean temperature rise above pre-industrial level (ΔTglob). The analysis is complemented by an assessment of water scarcity that would occur without additional climate change due to population change alone; this is done to identify the population groups that are faced with particularly high adaptation challenges. The results are analysed in the context of success and failure of implementing the Paris Agreement to evaluate how climate mitigation can reduce the future number of people exposed to severe hydrological change. The results show that without climate mitigation efforts, in the year 2100 about 4.9 billion people in the SSP2 population scenario would more likely than not be exposed to severe hydrological change, and about 2.1 billion of them would be faced with particularly high adaptation challenges due to already prevailing water scarcity. Limiting warming to 2 °C by a successful implementation of the Paris Agreement would strongly reduce these numbers to 615 million and 290 million, respectively. At the regional scale, substantial water-related risks remain at 2 °C, with more than 12% of the population exposed to severe hydrological change and high adaptation challenges in Latin America and the Middle East and north Africa region. Constraining δTglob to 1.5 °C would limit this share to about 5% in these regions. ©2019 Author(s).
  • Item
    Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications
    (München : European Geopyhsical Union, 2017) Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; Iizumi, Toshichika; Izaurralde, Roberto C.; Jones, Curtis; Khabarov, Nikolay; Lawrence, Peter; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A.M.; Ray, Deepak K.; Reddy, Ashwan; Rosenzweig, Cynthia; Ruane, Alex C.; Sakurai, Gen; Schmid, Erwin; Skalsky, Rastislav; Song, Carol X.; Wang, Xuhui; de Wit, Allard; Yang, Hong
    Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.
  • Item
    Climate change impacts on European arable crop yields: Sensitivity to assumptions about rotations and residue management
    (Amsterdam [u.a.] : Elsevier, 2022) Faye, Babacar; Webber, Heidi; Gaiser, Thomas; Müller, Christoph; Zhang, Yinan; Stella, Tommaso; Latka, Catharina; Reckling, Moritz; Heckelei, Thomas; Helming, Katharina; Ewert, Frank
    Most large scale studies assessing climate change impacts on crops are performed with simulations of single crops and with annual re-initialization of the initial soil conditions. This is in contrast to the reality that crops are grown in rotations, often with sizable proportion of the preceding crop residue to be left in the fields and varying soil initial conditions from year to year. In this study, the sensitivity of climate change impacts on crop yield and soil organic carbon to assumptions about annual model re-initialization, specification of crop rotations and the amount of residue retained in fields was assessed for seven main crops across Europe. Simulations were conducted for a scenario period 2040–2065 relative to a baseline from 1980 to 2005 using the SIMPLACE1 framework. Results indicated across Europe positive climate change impacts on yield for C3 crops and negative impacts for maize. The consideration of simulating rotations did not have a benefit on yield variability but on relative yield change in response to climate change which slightly increased for C3 crops and decreased for C4 crops when rotation was considered. Soil organic carbon decreased under climate change in both simulations assuming a continuous monocrop and plausible rotations by between 1% and 2% depending on the residue management strategy.
  • Item
    Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble
    (San Francisco, California, US : PLOS, 2019) Folberth, Christian; Elliott, Joshua; Müller, Christoph; Balkovič, Juraj; Chryssanthacopoulos, James; Izaurralde, Roberto C.; Jones, Curtis D.; Khabarov, Nikolay; Liu, Wenfeng; Reddy, Ashwan; Schmid, Erwin; Skalský, Rastislav; Yang, Hong; Arneth, Almut; Ciais, Philippe; Deryng, Delphine; Lawrence, Peter J.; Olin, Stefan; Pugh, Thomas A.M.; Ruane, Alex C.; Wang, Xuhui
    Global gridded crop models (GGCMs) combine agronomic or plant growth models with gridded spatial input data to estimate spatially explicit crop yields and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different biophysical models, setups, and input data. GGCM ensembles are frequently employed to bracket uncertainties in impact studies without investigating the causes of divergence in outputs. This study explores differences in maize yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model Intercomparison initiative. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, and selection of subroutines affecting crop yield estimates via cultivar distributions, soil attributes, and hydrology among others. The analyses reveal inter-annual yield variability and absolute yield levels in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. All GGCMs show an intermediate performance in reproducing reported yields with a higher skill if a static soil profile is assumed or sufficient plant nutrients are supplied. An in-depth comparison of setup domains for two EPIC-based GGCMs shows that GGCM performance and plant stress responses depend substantially on soil parameters and soil process parameterization, i.e. hydrology and nutrient turnover, indicating that these often neglected domains deserve more scrutiny. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions in setups appears the best solution for coping with uncertainties from lack of comprehensive global data on crop management, cultivar distributions and coefficients for agro-environmental processes. However, the underlying assumptions require systematic specifications to cover representative agricultural systems and environmental conditions. Furthermore, the interlinkage of parameter sensitivity from various domains such as soil parameters, nutrient turnover coefficients, and cultivar specifications highlights that global sensitivity analyses and calibration need to be performed in an integrated manner to avoid bias resulting from disregarded core model domains. Finally, relating evaluations of the EPIC-based GGCMs to a wider ensemble based on individual core models shows that structural differences outweigh in general differences in configurations of GGCMs based on the same model, and that the ensemble mean gains higher skill from the inclusion of structurally different GGCMs. Although the members of the wider ensemble herein do not consider crop-soil-management interactions, their sensitivity to nutrient supply indicates that findings for the EPIC-based sub-ensemble will likely become relevant for other GGCMs with the progressing inclusion of such processes.
  • Item
    A network-based approach for semi-quantitative knowledge mining and its application to yield variability
    (Bristol : IOP Publishing, 2016) Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph
    Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
  • Item
    LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
    (Katlenburg-Lindau : Copernicus, 2023) Ostberg, Sebastian; Müller, Christoph; Heinke, Jens; Schaphoff, Sibyll
    We present the Land Input Generator (LandInG) version 1.0, a new toolbox for generating input datasets for terrestrial ecosystem models (TEMs) from diverse and partially conflicting data sources. While LandInG 1.0 is applicable to process data for any TEM, it is developed specifically for the open-source dynamic global vegetation, hydrology, and crop growth model LPJmL (Lund-Potsdam-Jena with managed Land). The toolbox documents the sources and processing of data to model inputs and allows for easy changes to the spatial resolution. It is designed to make inconsistencies between different sources of data transparent so that users can make their own decisions on how to resolve these should they not be content with the default assumptions made here. As an example, we use the toolbox to create input datasets at 5 and 30 arcmin spatial resolution covering land, country, and region masks, soil, river networks, freshwater reservoirs, irrigation water distribution networks, crop-specific annual land use, fertilizer, and manure application. We focus on the toolbox describing the data processing rather than only publishing the datasets as users may want to make different choices for reconciling inconsistencies, aggregation, spatial extent, or similar. Also, new data sources or new versions of existing data become available continuously, and the toolbox approach allows for incorporating new data to stay up to date.
  • Item
    Generating a rule-based global gridded tillage dataset
    (Katlenburg-Lindau : Copernics Publications, 2020) Porwollik, Vera; Rolinski, Susanne; Heinke, Jens; Müller, Christoph
    Tillage is a central element in agricultural soil management and has direct and indirect effects on processes in the biosphere. Effects of agricultural soil management can be assessed by soil, crop, and ecosystem models, but global assessments are hampered by lack of information on the type of tillage and their spatial distribution. This study describes the generation of a classification of tillage practices and presents the spatially explicit mapping of these crop-specific tillage systems for around the year 2005. Tillage practices differ by the kind of equipment used, soil surface and depth affected, timing, and their purpose within the cropping systems. We classified the broad variety of globally relevant tillage practices into six categories: no-tillage in the context of Conservation Agriculture, traditional annual, traditional rotational, rotational, reduced, and conventional annual tillage. The identified tillage systems were allocated to gridded crop-specific cropland areas with a resolution of 5 arcmin. Allocation rules were based on literature findings and combine area information on crop type, water management regime, field size, water erosion, income, and aridity. We scaled reported national Conservation Agriculture areas down to grid cells via a probability-based approach for 54 countries. We provide area estimates of the six tillage systems aggregated to global and country scale. We found that 8.67Mkm2 of global cropland area was tilled intensively at least once a year, whereas the remaining 2.65Mkm2 was tilled less intensely. Further, we identified 4.67Mkm2 of cropland as an area where Conservation Agriculture could be expanded to under current conditions. The tillage classification enables the parameterization of different soil management practices in various kinds of model simulations. The crop-specific tillage dataset indicates the spatial distribution of soil management practices, which is a prerequisite to assess erosion, carbon sequestration potential, as well as water, and nutrient dynamics of cropland soils. The dynamic definition of the allocation rules and accounting for national statistics, such as the share of Conservation Agriculture per country, also allow for derivation of datasets for historical and future global soil management scenarios. The resulting tillage system dataset and source code are accessible via an open-data repository (DOIs: and, Porwollik et al., 2019a, b). © Author(s) 2019.
  • Item
    Drivers and patterns of land biosphere carbon balance reversal
    (Bristol : IOP Publishing, 2016) Müller, Christoph; Stehfest, Elke; van Minnen, Jelle G; Strengers, Bart; von Bloh, Werner; Beusen, Arthur H W; Schaphoff, Sibyll; Kram, Tom; Lucht, Wolfgang
    The carbon balance of the land biosphere is the result of complex interactions between land, atmosphere and oceans, including climatic change, carbon dioxide fertilization and land-use change. While the land biosphere currently absorbs carbon dioxide from the atmosphere, this carbon balance might be reversed under climate and land-use change ('carbon balance reversal'). A carbon balance reversal would render climate mitigation much more difficult, as net negative emissions would be needed to even stabilize atmospheric carbon dioxide concentrations. We investigate the robustness of the land biosphere carbon sink under different socio-economic pathways by systematically varying climate sensitivity, spatial patterns of climate change and resulting land-use changes. For this, we employ a modelling framework designed to account for all relevant feedback mechanisms by coupling the integrated assessment model IMAGE with the process-based dynamic vegetation, hydrology and crop growth model LPJmL. We find that carbon balance reversal can occur under a broad range of forcings and is connected to changes in tree cover and soil carbon mainly in northern latitudes. These changes are largely a consequence of vegetation responses to varying climate and only partially of land-use change and the rate of climate change. Spatial patterns of climate change as deduced from different climate models, substantially determine how much pressure in terms of global warming and land-use change the land biosphere will tolerate before the carbon balance is reversed. A reversal of the land biosphere carbon balance can occur as early as 2030, although at very low probability, and should be considered in the design of so-called peak-and-decline strategies.
  • Item
    Diverging importance of drought stress for maize and winter wheat in Europe
    ([London] : Nature Publishing Group UK, 2018) Webber, Heidi; Ewert, Frank; Olesen, Jørgen E.; Müller, Christoph; Fronzek, Stefan; Ruane, Alex C.; Bourgault, Maryse; Martre, Pierre; Ababaei, Behnam; Bindi, Marco; Ferrise, Roberto; Finger, Robert; Fodor, Nándor; Gabaldón-Leal, Clara; Gaiser, Thomas; Jabloun, Mohamed; Kersebaum, Kurt-Christian; Lizaso, Jon I.; Lorite, Ignacio J.; Manceau, Loic; Moriondo, Marco; Nendel, Claas; Rodríguez, Alfredo; Ruiz-Ramos, Margarita; Semenov, Mikhail A.; Siebert, Stefan; Stella, Tommaso; Stratonovitch, Pierre; Trombi, Giacomo; Wallach, Daniel
    Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.