Browse
Recent Submissions
listelement.badge.dso-type Item , Shifted substitution in non-commutative multivariate power series with a view towards free probability(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Ebrahimi-Fard, Kurusch; Patras, Frédéric; Tapia, Nikolas; Zambotti, LorenzoWe study a particular group law on formal power series in non-commuting parameters induced by their interpretation as linear forms on a suitable non-commutative and non- cocommutative graded connected word Hopf algebra. This group law is left-linear and is therefore associated to a pre-Lie structure on formal power series. We study these structures and show how they can be used to recast in a group theoretic form various identities and transformations on formal power series that have been central in the context of non-commutative probability theory, in particular in Voiculescu?s theory of free probability.listelement.badge.dso-type Item , First-order conditions for the optimal control of learning-informed nonsmooth PDEs(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Dong, Guozhi; Hintermüller, Michael; Papafitsoros, Kostas; Völkner, KathrinIn this paper we study the optimal control of a class of semilinear elliptic partial differential equations which have nonlinear constituents that are only accessible by data and are approximated by nonsmooth ReLU neural networks. The optimal control problem is studied in detail. In particular, the existence and uniqueness of the state equation are shown, and continuity as well as directional differentiability properties of the corresponding control-to-state map are established. Based on approximation capabilities of the pertinent networks, we address fundamental questions regarding approximating properties of the learning-informed control-to-state map and the solution of the corresponding optimal control problem. Finally, several stationarity conditions are derived based on different notions of generalized differentiability.listelement.badge.dso-type Item , A turnpike property for optimal control problems with dynamic probabilistic constraints(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Gugat, Martin; Heitsch, Holger; Henrion, RenéIn this paper we consider systems that are governed by linear time-discrete dynamics with an initial condition, additive random perturbations in each step and a terminal condition for the expected values. We study optimal control problems where the objective function consists of a term of tracking type for the expected values and a control cost. In addition, the feasible states have to satisfy a conservative probabilistic constraint that requires that the probability that the trajectories remain in a given set F is greater than or equal to a given lower bound. An application are optimal control problems related to storage management systems with uncertain in- and output. We give sufficient conditions that imply that the optimal expected trajectories remain close to a certain state that can be characterized as the solution of an optimal control problem without prescribed initial- and terminal condition. In this way we contribute to the study of the turnpike phenomenon that is well-known in mathematical economics and make a step towards the extension of the turnpike theory to problems with probabilistic constraints.listelement.badge.dso-type Item , On quenched homogenization of long-range random conductance models on stationary ergodic point processes(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Heida, MartinWe study the homogenization limit on bounded domains for the long-range random conductance model on stationary ergodic point processes on the integer grid. We assume that the conductance between neares neighbors in the point process are always positive and satisfy certain weight conditions. For our proof we use long-range two-scale convergence as well as methods from numerical analysis of finite volume methods.listelement.badge.dso-type Item , Continuum percolation in a nonstabilizing environment(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Jahnel, Benedikt; Jhawar, Sanjoy Kumar; Vu, Anh DucWe prove nontrivial phase transitions for continuum percolation in a Boolean model based on a Cox point process with nonstabilizing directing measure. The directing measure, which can be seen as a stationary random environment for the classical Poisson--Boolean model, is given by a planar rectangular Poisson line process. This Manhattan grid type construction features long-range dependencies in the environment, leading to absence of a sharp phase transition for the associated Cox--Boolean model. Our proofs rest on discretization arguments and a comparison to percolation on randomly stretched lattices established in [MR2116736].listelement.badge.dso-type Item , Macroscopic loops in the $3d$ double-dimer model(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Quitmann, Alexandra; Taggi, LorenzoThe double dimer model is defined as the superposition of two independent uniformly distributed dimer covers of a graph. Its configurations can be viewed as disjoint collections of self-avoiding loops. Our first result is that in ℤ d, d>2, the loops in the double dimer model are macroscopic. These are shown to behave qualitatively differently than in two dimensions. In particular, we show that, given two distant points of a large box, with uniformly positive probability there exists a loop visiting both points. Our second result involves the monomer double-dimer model, namely the double-dimer model in the presence of a density of monomers. These are vertices which are not allowed to be touched by any loop. This model depends on a parameter, the monomer activity, which controls the density of monomers. It is known from [Betz, Taggi] that a finite critical threshold of the monomer activity exists, below which a self-avoiding walk forced through the system is macroscopic. Our paper shows that, when d >2, such a critical threshold is strictly positive. In other words, the self-avoiding walk is macroscopic even in the presence of a positive density of monomers.listelement.badge.dso-type Item , Untangling dissipative and Hamiltonian effects in bulk and boundary driven systems(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Renger, D. R. Michiel; Sharma, UpanshuUsing the theory of large deviations, macroscopic fluctuation theory provides a framework to understand the behaviour of non-equilibrium dynamics and steady states in emphdiffusive systems. We extend this framework to a minimal model of non-equilibrium emphnon-diffusive system, specifically an open linear network on a finite graph. We explicitly calculate the dissipative bulk and boundary forces that drive the system towards the steady state, and non-dissipative bulk and boundary forces that drives the system in orbits around the steady state. Using the fact that these forces are orthogonal in a certain sense, we provide a decomposition of the large-deviation cost into dissipative and non-dissipative terms. We establish that the purely non-dissipative force turns the dynamics into a Hamiltonian system. These theoretical findings are illustrated by numerical examples.listelement.badge.dso-type Item , Displacement and pressure reconstruction from magnetic resonance elastography images: Application to an in silico brain model(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Galarce Marín, Felipe; Tabelow, Karsten; Polzehl, Jörg; Papanikas, Christos Panagiotis; Vavourakis, Vasileios; Lilaj, Ledia; Sack, Ingolf; Caiazzo, AlfonsoThis paper investigates a data assimilation approach for non-invasive quantification of intracranial pressure from partial displacement data, acquired through magnetic resonance elastography. Data assimilation is based on a parametrized-background data weak methodology, in which the state of the physical system tissue displacements and pressure fields is reconstructed from partially available data assuming an underlying poroelastic biomechanics model. For this purpose, a physics-informed manifold is built by sampling the space of parameters describing the tissue model close to their physiological ranges, to simulate the corresponding poroelastic problem, and compute a reduced basis. Displacements and pressure reconstruction is sought in a reduced space after solving a minimization problem that encompasses both the structure of the reduced-order model and the available measurements. The proposed pipeline is validated using synthetic data obtained after simulating the poroelastic mechanics on a physiological brain. The numerical experiments demonstrate that the framework can exhibit accurate joint reconstructions of both displacement and pressure fields. The methodology can be formulated for an arbitrary resolution of available displacement data from pertinent images. It can also inherently handle uncertainty on the physical parameters of the mechanical model by enlarging the physics-informed manifold accordingly. Moreover, the framework can be used to characterize, in silico, biomarkers for pathological conditions, by appropriately training the reduced-order model. A first application for the estimation of ventricular pressure as an indicator of abnormal intracranial pressure is shown in this contribution.listelement.badge.dso-type Item , Sharp phase transition for Cox percolation(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Hirsch, Christian; Jahnel, Benedikt; Muirhead, StephenWe prove the sharpness of the percolation phase transition for a class of Cox percolation models, i.e., models of continuum percolation in a random environment. The key requirements are that the environment has a finite range of dependence and satisfies a local boundedness condition, however the FKG inequality need not hold. The proof combines the OSSS inequality with a coarse-graining construction.listelement.badge.dso-type Item , Symmetries in TEM imaging of crystals with strain(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Koprucki, Thomas; Maltsi, Anieza; Mielke, AlexanderTEM images of strained crystals often exhibit symmetries, the source of which is not always clear. To understand these symmetries we distinguish between symmetries that occur from the imaging process itself and symmetries of the inclusion that might affect the image. For the imaging process we prove mathematically that the intensities are invariant under specific transformations. A combination of these invariances with specific properties of the strain profile can then explain symmetries observed in TEM images. We demonstrate our approach to the study of symmetries in TEM images using selected examples in the field of semiconductor nanostructures such as quantum wells and quantum dots.listelement.badge.dso-type Item , On two coupled degenerate parabolic equations motivated by thermodynamics(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Mielke, AlexanderWe discuss a system of two coupled parabolic equations that have degenerate diffusion constants depending on the energy-like variable. The dissipation of the velocity-like variable is fed as a source term into the energy equation leading to conservation of the total energy. The motivation of studying this system comes from Prandtl's and Kolmogorov's one and two-equation models for turbulence, where the energy-like variable is the mean turbulent kinetic energy. Because of the degeneracies there are solutions with time-dependent support like in the porous medium equation, which is contained in our system as a special case. The motion of the free boundary may be driven by either self-diffusion of the energy-like variable or by dissipation of the velocity-like variable. The cross-over of these two phenomena is exemplified for the associated planar traveling fronts. We provide existence of suitably defined weak and very weak solutions. After providing a thermodynamically motivated gradient structure we also establish convergence into steady state for bounded domains and provide a conjecture on the asymptotically self-similar behavior of the solutions in Rd for large times.listelement.badge.dso-type Item , Dynamical Gibbs variational principles for irreversible interacting particle systems with applications to attractor properties(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Jahnel, Benedikt; Köppl, JonasWe consider irreversible translation-invariant interacting particle systems on the d-dimensional cubic lattice with finite local state space, which admit at least one Gibbs measure as a time-stationary measure. Under some mild degeneracy conditions on the rates and the specification we prove, that zero relative entropy loss of a translation-invariant measure implies, that the measure is Gibbs w.r.t. the same specification as the time-stationary Gibbs measure. As an application, we obtain the attractor property for irreversible interacting particle systems, which says that any weak limit point of any trajectory of translation-invariant measures is a Gibbs measure w.r.t. the same specification as the time-stationary measure. This extends previously known results to fairly general irreversible interacting particle systems.listelement.badge.dso-type Item , Periodic Lp estimates by R-boundedness: Applications to the Navier--Stokes equations(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Eiter, Thomas; Kyed, Mads; Shibata, YoshihiroGeneral evolution equations in Banach spaces are investigated. Based on an operator-valued version of de Leeuw's transference principle, time-periodic Lp estimates of maximal regularity type are established from R-bounds of the family of solution operators (R-solvers) to the corresponding resolvent problems. With this method, existence of time-periodic solutions to the Navier--Stokes equations is shown for two configurations: in a periodically moving bounded domain and in an exterior domain, subject to prescribed time-periodic forcing and boundary data.listelement.badge.dso-type Item , Low-rank Wasserstein polynomial chaos expansions in the framework of optimal transport(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Gruhlke, Robert; Eigel, MartinA unsupervised learning approach for the computation of an explicit functional representation of a random vector Y is presented, which only relies on a finite set of samples with unknown distribution. Motivated by recent advances with computational optimal transport for estimating Wasserstein distances, we develop a new Wasserstein multi-element polynomial chaos expansion (WPCE). It relies on the minimization of a regularized empirical Wasserstein metric known as debiased Sinkhorn divergence. As a requirement for an efficient polynomial basis expansion, a suitable (minimal) stochastic coordinate system X has to be determined with the aim to identify ideally independent random variables. This approach generalizes representations through diffeomorphic transport maps to the case of non-continuous and non-injective model classes M with different input and output dimension, yielding the relation Y=M(X) in distribution. Moreover, since the used PCE grows exponentially in the number of random coordinates of X, we introduce an appropriate low-rank format given as stacks of tensor trains, which alleviates the curse of dimensionality, leading to only linear dependence on the input dimension. By the choice of the model class M and the smooth loss function, higher order optimization schemes become possible. It is shown that the relaxation to a discontinuous model class is necessary to explain multimodal distributions. Moreover, the proposed framework is applied to a numerical upscaling task, considering a computationally challenging microscopic random non-periodic composite material. This leads to tractable effective macroscopic random field in adopted stochastic coordinates.listelement.badge.dso-type Item , Strong stationarity conditions for the optimal control of a Cahn--Hilliard--Navier--Stokes system(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Hintermüller, Michael; Keil, TobiasThis paper is concerned with the distributed optimal control of a time-discrete Cahn-Hilliard-Navier-Stokes system with variable densities. It focuses on the double-obstacle potential which yields an optimal control problem for a variational inequality of fourth order and the Navier-Stokes equation. The existence of solutions to the primal system and of optimal controls is established. The Lipschitz continuity of the constraint mapping is derived and used to characterize the directional derivative of the constraint mapping via a system of variational inequalities and partial differential equations. Finally, strong stationarity conditions are presented following an approach from Mignot and Puel.listelement.badge.dso-type Item , Incompressible limit for a fluid mixture(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Druet, Pierre-ÉtienneIn this paper we discuss the incompressible limit for multicomponent fluids in the isothermal ideal case. Both a direct limit-passage in the equation of state and the low Mach-number limit in rescaled PDEs are investigated. Using the relative energy inequality, we obtain convergence results for the densities and the velocity-field under the condition that the incompressible model possesses a sufficiently smooth solution, which is granted at least for a short time. Moreover, in comparison to single-component flows, uniform estimates and the convergence of the pressure are needed in the multicomponent case because the incompressible velocity field is not divergence-free. We show that certain constellations of the mobility tensor allow to control gradients of the entropic variables and yield the convergence of the pressure in L1.listelement.badge.dso-type Item , Pressure-robustness in the context of optimal control(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Merdon, Christian; Wollner, WinnifriedThis paper studies the benefits of pressure-robust discretizations in the scope of optimal control of incompressible flows. Gradient forces that may appear in the data can have a negative impact on the accuracy of state and control and can only be correctly balanced if their L2-orthogonality onto discretely divergence-free test functions is restored. Perfectly orthogonal divergence-free discretizations or divergence-free reconstructions of these test functions do the trick and lead to much better analytic a priori estimates that are also validated in numerical examples.listelement.badge.dso-type Item , Reconstruction of flow domain boundaries from velocity data via multi-step optimization of distributed resistance(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Pártl, Ondřej; Wilbrandt, Ulrich; Mura, Joaquín; Caiazzo, AlfonsoWe reconstruct the unknown shape of a flow domain using partially available internal velocity measurements. This inverse problem is motivated by applications in cardiovascular imaging where motion-sensitive protocols, such as phase-contrast MRI, can be used to recover three-dimensional velocity fields inside blood vessels. In this context, the information about the domain shape serves to quantify the severity of pathological conditions, such as vessel obstructions. We consider a flow modeled by a linear Brinkman problem with a fictitious resistance accounting for the presence of additional boundaries. To reconstruct these boundaries, we employ a multi-step gradient-based variational method to compute a resistance that minimizes the difference between the computed flow velocity and the available data. Afterward, we apply different post-processing steps to reconstruct the shape of the internal boundaries. To limit the overall computational cost, we use a stabilized equal-order finite element method. We prove the stability and the well-posedness of the considered optimization problem. We validate our method on three-dimensional examples based on synthetic velocity data and using realistic geometries obtained from cardiovascular imaging.listelement.badge.dso-type Item , The geometry of controlled rough paths(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Varzaneh, Mazyar Ghani; Riedel, Sebastian; Schmeding, Alexander; Tapia, NikolasWe prove that the spaces of controlled (branched) rough paths of arbitrary order form a continuous field of Banach spaces. This structure has many similarities to an (infinite-dimensional) vector bundle and allows to define a topology on the total space, the collection of all controlled path spaces, which turns out to be Polish in the geometric case. The construction is intrinsic and based on a new approximation result for controlled rough paths. This framework turns well-known maps such as the rough integration map and the Itô-Lyons map into continuous (structure preserving) mappings. Moreover, it is compatible with previous constructions of interest in the stability theory for rough integration.listelement.badge.dso-type Item , Local surrogate responses in the Schwarz alternating method for elastic problems on random voided domains(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Drieschner, Martin; Gruhlke, Robert; Petryna, Yuri; Eigel, Martin; Hömberg, DietmarImperfections and inaccuracies in real technical products often influence the mechanical behavior and the overall structural reliability. The prediction of real stress states and possibly resulting failure mechanisms is essential and a real challenge, e.g. in the design process. In this contribution, imperfections in elastic materials such as air voids in adhesive bonds between fiber-reinforced composites are investigated. They are modeled as arbitrarily shaped and positioned. The focus is on local displacement values as well as on associated stress concentrations caused by the imperfections. For this purpose, the resulting complex random one-scale finite element model is numerically solved by a new developed surrogate model using an overlapping domain decomposition scheme based on Schwarz alternating method. Here, the actual response of local subproblems associated with isolated material imperfections is determined by a single appropriate surrogate model, that allows for an accelerated propagation of randomness. The efficiency of the method is demonstrated for imperfections with elliptical and ellipsoidal shape in 2D and 3D and extended to arbitrarily shaped voids. For the latter one, a local surrogate model based on artificial neural networks (ANN) is constructed. Finally, a comparison to experimental results validates the numerical predictions for a real engineering problem.
