Heat Kernels, Stochastic Processes and Functional Inequalities
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The general topic of the 2013 workshop Heat kernels, stochastic processes and functional inequalities was the study of linear and non-linear diffusions in geometric environments: finite and infinite-dimensional manifolds, metric spaces, fractals and graphs, including random environments. The workshop brought together leading researchers from analysis, probability and geometry and provided a unique opportunity for interaction of established and young scientists from these areas. Unifying themes were heat kernel analysis, mass transport problems and related functional inequalities such as Poincar´e, Sobolev, logarithmic Sobolev, Bakry-Emery, Otto-Villani and Talagrand inequalities. These concepts were at the heart of Perelman’s proof of Poincar´e’s conjecture, as well as of the development of the Otto calculus, and the synthetic Ricci bounds of Lott-Sturm-Villani. The workshop provided participants with an opportunity to discuss how these techniques can be used to approach problems in optimal transport for non-local operators, subelliptic operators in finite and infinite dimensions, analysis on singular spaces, as well as random walks in random media.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.