Homotopic and Geometric Galois Theory (online meeting)

Loading...
Thumbnail Image

Date

Authors

Volume

12

Issue

Journal

Series Titel

Oberwolfach reports : OWR

Book Title

Publisher

Zürich : EMS Publ. House

Link to publishers version

Abstract

In his "Letter to Faltings'', Grothendieck lays the foundation of what will become part of his multi-faceted legacy to arithmetic geometry. This includes the following three branches discussed in the workshop: the arithmetic of Galois covers, the theory of motives and the theory of anabelian Galois representations. Their geometrical paradigms endow similar but complementary arithmetic insights for the study of the absolute Galois group $\mathrm{G}_{\mathbb{Q}}$ of the field of rational numbers that initially crystallized into a functorially group-theoretic unifying approach. Recent years have seen some new enrichments based on modern geometrical constructions - e.g. simplicial homotopy, Tannaka perversity, automorphic forms - that endow some higher considerations and outline new geometric principles. This workshop brought together an international panel of young and senior experts of arithmetic geometry who sketched the future desire paths of homotopic and geometric Galois theory.

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.