A McKay Correspondence for Reflection Groups

Loading...
Thumbnail Image

Date

Volume

14

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

We construct a noncommutative desingularization of the discriminant of a finite reflection group G as a quotient of the skew group ring A=S∗G. If G is generated by order two reflections, then this quotient identifies with the endomorphism ring of the reflection arrangement A(G) viewed as a module over the coordinate ring SG/(Δ) of the discriminant of G. This yields, in particular, a correspondence between the nontrivial irreducible representations of G to certain maximal Cohen--Macaulay modules over the coordinate ring SG/(Δ). These maximal Cohen--Macaulay modules are precisely the nonisomorphic direct summands of the coordinate ring of the reflection arrangement A(G) viewed as a module over SG/(Δ). We identify some of the corresponding matrix factorizations, namely the so-called logarithmic co-residues of the discriminant.

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.