Octonion Polynomials with Values in a Subalgebra

Loading...
Thumbnail Image

Date

Volume

21

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

In this paper, we prove that given an octonion algebra A over a field F, a subring E⊆F and an octonion E-algebra R inside A, the set S of polynomials f(x)∈A[x] satisfying f(R)⊆R is an octonion (S∩F[x])-algebra, under the assumption that either 1/2∈R or char(F)≠0, and R contains the standard generators of A and their inverses. The project was inspired by a question raised by Werner on whether integer-valued octonion polynomials over the reals form a nonassociative ring. We also prove that the polynomials 1p(xp2−x)(xp−x) for prime p are integer-valued in the ring of polynomials A[x] over any real nonsplit Cayley-Dickson algebra A.

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.