On commuting varieties of nilradicals of Borel subalgebras of reductive Lie algebras

Loading...
Thumbnail Image

Date

Volume

2012-14

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

Let G be a connected reductive algebraic group defined over an algebraically closed field k of characteristic zero. We consider the commuting variety C(u) of the nilradical u of the Lie algebra b of a Borel subgroup B of G. In case B acts on u with only a finite number of orbits, we verify that C(u) is equidimensional and that the irreducible components are in correspondence with the distinguished B-orbits in u. We observe that in general C(u) is not equidimensional, and determine the irreducible components of C(u) in the minimal cases where there are infinitely many B-orbits in u.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.