Weakly complex homogeneous spaces
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We complete our recent classification [GMS11] of compact inner symmetric spaces with weakly complex tangent bundle by filling up a case which was left open, and extend this classification to the larger category of compact homogeneous spaces with positive Euler characteristic. We show that a simply connected compact equal rank homogeneous space has weakly complex tangent bundle if and only if it is a product of compact equal rank homogeneous spaces which either carry an invariant almost complex structure (and are classified by Hermann [H56]), or have stably trivial tangent bundle (and are classified by Singhof and Wemmer [SW86]), or belong to an explicit list of weakly complex spaces which have neither stably trivial tangent bundle, nor carry invariant almost complex structures.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.