Weak and Strong disorder for the stochastic heat equation and the continuous directed polymer in d ≥ 3

Loading...
Thumbnail Image

Date

Volume

Issue

Journal

Series Titel

Book Title

Publisher

Cambridge : arXiv

Link to publishers version

Abstract

We consider the smoothed multiplicative noise stochastic heat equation d u_{\eps,t}= \frac 12 \Delta u_{\eps,t} d t+ \beta \eps^{\frac{d-2}{2}}, , u_{\eps, t} , d B_{\eps,t} , ;;u_{\eps,0}=1, in dimension d≥3, where $B_{\eps,t}$ is a spatially smoothed (at scale $\eps$) space-time white noise, and β>0 is a parameter. We show the existence of a β¯∈(0,∞) so that the solution exhibits weak disorder when β<β¯ and strong disorder when β>β¯. The proof techniques use elements of the theory of the Gaussian multiplicative chaos.

Description

Keywords

Collections

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.