Braid equivalences and the L-moves

Loading...
Thumbnail Image

Date

Volume

2011-20

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

In this survey paper we present the L–moves between braids and how they can adapt and serve for establishing and proving braid equivalence theorems for various diagrammatic settings, such as for classical knots, for knots in knot complements, in c.c.o. 3–manifolds and in handlebodies, as well as for virtual knots, for flat virtuals, for welded knots and for singular knots. The L–moves are local and they provide a uniform ground for formulating and proving braid equivalence theorems for any diagrammatic setting where the notion of braid and diagrammatic isotopy is defined, the statements being first geometric and then algebraic.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.