Please use this identifier to cite or link to this item: https://oa.tib.eu/renate/handle/123456789/2463
Files in This Item:
File SizeFormat 
687621771.pdf416,17 kBAdobe PDFView/Open
Title: Geometry of heteroclinic cascades in scalar parabolic differential equations
Authors: Wolfrum, Matthias
URI: https://doi.org/10.34657/2425
https://oa.tib.eu/renate/handle/123456789/2463
Issue Date: 1998
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We investigate the geometrical properties of the attractor for semilinear scalar parabolic PDEs on a bounded interval with Neumann boundary conditions. Using the nodal properties of the stationary solutions which are determined by an ordinary boundary value problem, we obtain crucial information about the long-time behavior for the full PDE. Especially, we prove a criterion for the intersection of strong- stable and unstable manifolds in the finite dimensional Morse-Smale flow on the attractor.
Type: book; Text
Publishing status: publishedVersion
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Show full item record
Wolfrum, Matthias, 1998. Geometry of heteroclinic cascades in scalar parabolic differential equations. Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Wolfrum, M. (1998) Geometry of heteroclinic cascades in scalar parabolic differential equations. Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Wolfrum M. Geometry of heteroclinic cascades in scalar parabolic differential equations. Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik; 1998.
Wolfrum, M. (1998). Geometry of heteroclinic cascades in scalar parabolic differential equations (Version publishedVersion). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Wolfrum M. Geometry of heteroclinic cascades in scalar parabolic differential equations. Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik; 1998.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.