Canonical fitness model for simple scale-free graphs
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We consider a fitness model assumed to generate simple graphs with a power-law heavy-tailed degree sequence, P(k)∝k−1−α with 0<α<1, in which the corresponding distributions do not possess a mean. We discuss the situations in which the model is used to produce a multigraph and examine what happens if the multiple edges are merged to a single one and thus a simple graph is built. We give the relation between the (normalized) fitness parameter r and the expected degree ν of a node and show analytically that it possesses nontrivial intermediate and final asymptotic behaviors. We show that the model produces P(k)∝k−2 for large values of k independent of α. Our analytical findings are confirmed by numerical simulations.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.