Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system

Loading...
Thumbnail Image

Date

Volume

Issue

Journal

Series Titel

Book Title

Publisher

Cambridge : arXiv

Link to publishers version

Abstract

A well-known diffuse interface model consists of the Navier-Stokes equations nonlinearly coupled with a convective Cahn-Hilliard type equation. This system describes the evolution of an incompressible isothermal mixture of binary-fluids and it has been investigated by many authors. Here we consider a variant of this model where the standard Cahn-Hilliard equation is replaced by its nonlocal version. More precisely, the gradient term in the free energy functional is replaced by a spatial convolution operator acting on the order parameter phi, while the potential F may have any polynomial growth. Therefore the coupling with the Navier-Stokes equations is difficult to handle even in two spatial dimensions because of the lack of regularity of phi. We establish the global existence of a weak solution. In the two-dimensional case we also prove that such a solution satisfies the energy identity and a dissipative estimate, provided that F fulfills a suitable coercivity condition.

Description

Keywords

Collections

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.