Computational error estimates for Born-Oppenheimer molecular dynamics with nearly crossing potential surfaces
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The difference of the values of observables for the time-independent Schroedinger equation, with matrix valued potentials, and the values of observables for ab initio Born-Oppenheimer molecular dynamics, of the ground state, depends on the probability to be in excited states and the electron/nuclei mass ratio. The paper first proves an error estimate (depending on the electron/nuclei mass ratio and the probability to be in excited states) for this difference of microcanonical observables, assuming that molecular dynamics space-time averages converge, with a rate related to the maximal Lyapunov exponent. The error estimate is uniform in the number of particles and the analysis does not assume a uniform lower bound on the spectral gap of the electron operator and consequently the probability to be in excited states can be large. A numerical method to determine the probability to be in excited states is then presented, based on Ehrenfest molecular dynamics and stability analysis of a perturbed eigenvalue problem.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.