Non-standard behavior of density estimators for sums of squared observations

Loading...
Thumbnail Image

Date

Volume

2008-07

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

It has been shown recently that, under an appropriate integrability condition, densities of functions of independent and identically distributed random variables can be estimated at the parametric rate by a local U-statistic, and a functional central limit theorem holds. For the sum of two squared random variables, the integrability condition typically fails. We show that then the estimator behaves differently for different arguments. At points in the support of the squared random variable, the rate of the estimator slows down by a logarithmic factor and is independent of the bandwidth, but the asymptotic variance depends on the rate of the bandwidth, and otherwise only on the density of the squared random variable at this point and at zero. A functional central limit theorem cannot hold. Of course, for bounded random variables, the sum of squares is more spread out than a single square. At points outside the support of the squared random variable, the estimator behaves classically. Now the rate is again parametric, the asymptotic variance has a different form and does not depend on the bandwidth, and a functional central limit theorem holds.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.