Lower large deviations for geometric functionals

Loading...
Thumbnail Image

Date

Volume

25

Issue

Journal

Electronic communications in probability : ECP

Series Titel

Book Title

Publisher

[Madralin] : EMIS ELibEMS

Link to publishers version

Abstract

This work develops a methodology for analyzing large-deviation lower tails associated with geometric functionals computed on a homogeneous Poisson point process. The technique applies to characteristics expressed in terms of stabilizing score functions exhibiting suitable monotonicity properties. We apply our results to clique counts in the random geometric graph, intrinsic volumes of Poisson–Voronoi cells, as well as power-weighted edge lengths in the random geometric, k-nearest neighbor and relative neighborhood graph.

Description

Keywords

Collections

License

CC BY 4.0 Unported