Balanced-Viscosity solutions to infinite-dimensional multi-rate systems

Loading...
Thumbnail Image
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

We consider generalized gradient systems with rate-independent and rate-dependent dissipation potentials. We provide a general framework for performing a vanishing-viscosity limit leading to the notion of parametrized and true Balanced-Viscosity solutions that include a precise description of the jump behavior developing in this limit. Distinguishing an elastic variable $u$ having a viscous damping with relaxation time $eps^alpha$ and an internal variable $z$ with relaxation time $eps$ we obtain different limits for the three cases $alpha in (0,1)$, $alpha=1$ and $alpha>1$. An application to a delamination problem shows that the theory is general enough to treat nontrivial models in continuum mechanics.

Description
Keywords
Balanced-Viscosity solution, reparametrized solutions, energy-dissipation principle, generalized gradient systems, delamination model
Citation
Citation
Mielke, A., & Rossi, R. (2021). Balanced-Viscosity solutions to infinite-dimensional multi-rate systems (Version publishedVersion, Vol. 2902). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik. https://doi.org//10.20347/WIAS.PREPRINT.2902
Collections