Discounted optimal stopping for maxima of some jump-diffusion processes
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 1161 | |
dc.contributor.author | Gapeev, Pavel | |
dc.date.accessioned | 2016-03-24T17:38:12Z | |
dc.date.available | 2019-06-28T08:02:22Z | |
dc.date.issued | 2006 | |
dc.description.abstract | We present solutions to some discounted optimal stopping problems for the maximum process in a model driven by a Brownian motion and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problems to integro-differential free-boundary problems where the normal reflection and smooth fit may break down and the latter then be replaced by the continuous fit. The results can be interpreted as pricing perpetual American lookback options with fixed and floating strikes in a jump-diffusion model. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 0946-8633 | |
dc.identifier.uri | https://doi.org/10.34657/2227 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/1818 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | Discounted optimal stopping for maxima of some jump-diffusion processes | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 51971590X.pdf
- Size:
- 320.57 KB
- Format:
- Adobe Portable Document Format
- Description: