Prototypical warm-starts for demand-robust LP-based energy system optimization
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The expressiveness of energy system optimization models (ESOMs) depends on a multitude of exogenous parameters. For example, sound estimates of the future energy demand are essential to enable qualified decisions on long-term investments. However, the enormous demand fluctuations even on a fine-grained scale diminish the computational performance of large-scale ESOMs. We therefore propose a clusteringand- decomposition method for linear programming based ESOMs that first identifies and solves prototypical demand scenarios with the dual simplex algorithm, and then composes dual optimal prototype bases to a warm-start basis for the full model. We evaluate the feasibility and computational efficiency our approach on a real-world case study, using a sector-coupled ESOM with hourly resolution for the Berlin-Brandenburg area in Germany, based on the oemof framework. Datei-Upload durch TIB
