Detachment of an adhered micropillar from a dissimilar substrate

dc.bibliographicCitation.firstPage159
dc.bibliographicCitation.journalTitleJournal of the Mechanics and Physics of Solidseng
dc.bibliographicCitation.lastPage183
dc.bibliographicCitation.volume75
dc.contributor.authorKhaderi, S.N.
dc.contributor.authorFleck, N.A.
dc.contributor.authorArzt, E.
dc.contributor.authorMcMeeking, R.M.
dc.date.accessioned2016-03-24T17:36:57Z
dc.date.available2019-06-28T12:39:15Z
dc.date.issued2015
dc.description.abstractAbstract The mechanics of detachment is analysed for 2D flat-bottomed planar pillars and 3D cylindrical pillars from a dissimilar elastic substrate. Application of an axial stress to the free end of the pillar results in a singularity in stress at the corner with the substrate. An eigenvalue analysis reveals that the stress field near the corner is dominated by two singular eigenfields having eigenvalues ( λ 1 , λ 2 ) with corresponding intensities ( H 1 , H 2 ) . The asymptotic stress field σij is of the form σ ij = H 1 r λ 1 − 1 f ij ( λ 1 , θ ) + H 2 r λ 2 − 1 f ij ( λ 2 , θ ) , where fij describe the angular dependence θ of σij, and r is the radial distance from the corner. The stress intensities ( H 1 , H 2 ) are calculated numerically, using a domain integral approach, as a function of the elastic mismatch between the pillar and substrate. The singular zone extends across approximately 10 of the pillar diameter (in 3D) or pillar width (in 2D). Interfacial failure is predicted for an assumed crack emanating from the corner of pillar and substrate. For the case of an interfacial crack that resides within the domain of corner singularity, a boundary layer analysis is performed to calculate the dependence of the interfacial stress intensity factor K upon ( H 1 , H 2 ) . When the crack extends beyond the domain of corner singularity, it is necessary to consider the full geometry in order to obtain K. A case study explores the sensitivity of the pull-off stress to the flaw size and to the degree of material mismatch. The study has implications for the optimum design of adhesive surface micropatterns, for bonding to either stiffer or more compliant substrates.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/1445
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4224
dc.language.isoengeng
dc.publisherAmsterdam : Elseviereng
dc.relation.doihttps://doi.org/10.1016/j.jmps.2014.11.004
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc530eng
dc.subject.otherMicropillar detachmenteng
dc.subject.otherfibrillar adhesioneng
dc.subject.otherbio-inspired adhesioneng
dc.subject.othermicro-pillar pull-offeng
dc.subject.otherinterfacial fracture mechanicseng
dc.titleDetachment of an adhered micropillar from a dissimilar substrateeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
inm201511.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
Description:
Collections