Highly efficient modulation doping: A path toward superior organic thermoelectric devices

dc.bibliographicCitation.firstPageeabl9264eng
dc.bibliographicCitation.issue13eng
dc.bibliographicCitation.journalTitleScience Advanceseng
dc.bibliographicCitation.volume8eng
dc.contributor.authorWang, Shu-Jen
dc.contributor.authorPanhans, Michel
dc.contributor.authorLashkov, Ilia
dc.contributor.authorKleemann, Hans
dc.contributor.authorCaglieris, Federico
dc.contributor.authorBecker-Koch, David
dc.contributor.authorVahland, Jörn
dc.contributor.authorGuo, Erjuan
dc.contributor.authorHuang, Shiyu
dc.contributor.authorKrupskaya, Yulia
dc.contributor.authorVaynzof, Yana
dc.contributor.authorBüchner, Bernd
dc.contributor.authorOrtmann, Frank
dc.contributor.authorLeo, Karl
dc.date.accessioned2022-07-13T05:58:06Z
dc.date.available2022-07-13T05:58:06Z
dc.date.issued2022
dc.description.abstractWe investigate the charge and thermoelectric transport in modulation-doped large-area rubrene thin-film crystals with different crystal phases. We show that modulation doping allows achieving superior doping efficiencies even for high doping densities, when conventional bulk doping runs into the reserve regime. Modulation-doped orthorhombic rubrene achieves much improved thermoelectric power factors, exceeding 20 μW m−1 K−2 at 80°C. Theoretical studies give insight into the energy landscape of the heterostructures and its influence on qualitative trends of the Seebeck coefficient. Our results show that modulation doping together with high-mobility crystalline organic semiconductor films is a previosly unexplored strategy for achieving high-performance organic thermoelectrics.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9723
dc.identifier.urihttps://doi.org/10.34657/8761
dc.language.isoengeng
dc.publisherWashington, DC [u.a.] : Assoc.eng
dc.relation.doihttps://doi.org/10.1126/sciadv.abl9264
dc.relation.essn2375-2548
dc.rights.licenseCC BY-NC 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/eng
dc.subject.ddc500eng
dc.subject.otherSemiconductor dopingeng
dc.subject.otherThermoelectric powereng
dc.subject.otherBulk dopingeng
dc.subject.otherCrystal phasiseng
dc.subject.otherDoping densitieseng
dc.subject.otherDoping efficiencyeng
dc.subject.otherModulation dopingeng
dc.subject.otherModulation-dopedeng
dc.subject.otherOrganicseng
dc.subject.otherRubrene thin filmseng
dc.subject.otherThermoelectric deviceseng
dc.subject.otherThermoelectric transporteng
dc.subject.otherModulationeng
dc.titleHighly efficient modulation doping: A path toward superior organic thermoelectric deviceseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Highly_efficient_modulation.pdf
Size:
682.51 KB
Format:
Adobe Portable Document Format
Description:
Collections