Anisotropic optical properties of highly doped rutile SnO2: Valence band contributions to the Burstein-Moss shift

dc.bibliographicCitation.issue2eng
dc.bibliographicCitation.journalTitleAPL Materialseng
dc.bibliographicCitation.volume7
dc.contributor.authorFeneberg, Martin
dc.contributor.authorLidig, Christian
dc.contributor.authorWhite, Mark E.
dc.contributor.authorTsai, Min Y.
dc.contributor.authorSpeck, James S.
dc.contributor.authorBierwagen, Oliver
dc.contributor.authorGalazka, Zbigniew
dc.contributor.authorGoldhahn, RĂ¼diger
dc.date.accessioned2019-03-12T03:41:42Z
dc.date.available2019-06-28T12:38:34Z
dc.date.issued2018
dc.description.abstractThe interband absorption of the transparent conducting semiconductor rutile stannic oxide (SnO2) is investigated as a function of increasing free electron concentration. The anisotropic dielectric functions of SnO2:Sb are determined by spectroscopic ellipsometry. The onsets of strong interband absorption found at different positions shift to higher photon energies with increasing free carrier concentration. For the electric field vector parallel to the optic axis, a low energy shoulder increases in prominence with increasing free electron concentration. We analyze the influence of different many-body effects and can model the behavior by taking into account bandgap renormalization and the Burstein-Moss effect. The latter consists of contributions from the conduction and the valence bands which can be distinguished because the nonparabolic conduction band dispersion of SnO2 is known already with high accuracy. The possible originsof the shoulder are discussed. The most likely mechanism is identified to be interband transitions at jkj > 0 from a dipole forbidden valence band.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/1407
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4087
dc.language.isoengeng
dc.publisherNew York : American Institute of Physicseng
dc.relation.doihttps://doi.org/10.1063/1.5054351
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherChemical compounds and componentseng
dc.subject.otherTransition metal oxideseng
dc.subject.otherElectronic bandstructureeng
dc.subject.otherSemiconductorseng
dc.subject.otherDopingeng
dc.subject.otherOptical metrologyeng
dc.subject.otherBand gapeng
dc.subject.otherMany body problemseng
dc.subject.otherOptical propertieseng
dc.titleAnisotropic optical properties of highly doped rutile SnO2: Valence band contributions to the Burstein-Moss shifteng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPDIeng
wgl.contributorIKZeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.5054351.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:
Collections