Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging

dc.bibliographicCitation.firstPage4233
dc.bibliographicCitation.issue7
dc.bibliographicCitation.lastPage4240
dc.bibliographicCitation.volume18
dc.contributor.authorSchneider, Falk
dc.contributor.authorWaithe, Dominic
dc.contributor.authorGaliani, Silvia
dc.contributor.authorBernardino de la Serna, Jorge
dc.contributor.authorSezgin, Erdinc
dc.contributor.authorEggeling, Christian
dc.date.accessioned2023-01-20T08:11:28Z
dc.date.available2023-01-20T08:11:28Z
dc.date.issued2018-6-12
dc.description.abstractThe diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED–FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED–FCS measurement method, line interleaved excitation scanning STED–FCS (LIESS–FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS–FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS–FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10948
dc.identifier.urihttp://dx.doi.org/10.34657/9974
dc.language.isoeng
dc.publisherWashington, DC : ACS Publ.
dc.relation.doihttps://doi.org/10.1021/acs.nanolett.8b01190
dc.relation.essn1530-6992
dc.relation.ispartofseriesNano letters : a journal dedicated to nanoscience and nanotechnology 18 (2018), Nr. 7
dc.relation.issn1530-6984
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectDiffusioneng
dc.subjectlipidseng
dc.subjectplasma membraneeng
dc.subjectscanning FCSeng
dc.subjectsimultaneous scanningeng
dc.subjectSTED-FCSeng
dc.subject.ddc540
dc.subject.ddc660
dc.titleNanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imagingeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleNano letters : a journal dedicated to nanoscience and nanotechnology
tib.accessRightsopenAccesseng
wgl.contributorIPHT
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanoscale_Spatiotemporal_Diffusion_Modes.pdf
Size:
3.67 MB
Format:
Adobe Portable Document Format
Description:
Collections