Elastomeric Optical Waveguides by Extrusion Printing

dc.bibliographicCitation.firstPage2101539
dc.bibliographicCitation.issue10
dc.bibliographicCitation.journalTitleAdvanced Materials Technologieseng
dc.bibliographicCitation.volume7
dc.contributor.authorFeng, Jun
dc.contributor.authorZheng, Yijun
dc.contributor.authorJiang, Qiyang
dc.contributor.authorWłodarczyk‐Biegun, Małgorzata K.
dc.contributor.authorPearson, Samuel
dc.contributor.authordel Campo, Aránzazu
dc.date.accessioned2023-02-24T06:43:44Z
dc.date.available2023-02-24T06:43:44Z
dc.date.issued2022
dc.description.abstractAdvances in optogenetics and the increasing use of implantable devices for therapies and health monitoring are driving demand for compliant, biocompatible optical waveguides and scalable methods for their manufacture. Molding, thermal drawing, and dip-coating are the most prevalent approaches in recent literature. Here the authors demonstrate that extrusion printing at room temperature can be used for continuous fabrication of compliant optical waveguides with polydimethylsiloxane (PDMS) core and crosslinked Pluronic F127-diacrylate (Pluronic-DA) cladding. The optical fibers are printed from fluid precursor inks and stabilized by physical interactions and photoinitiated crosslinking in the Pluronic-DA. The printed fibers show optical loss values of 0.13–0.34 dB cm–1 in air and tissue within the wavelength range of 405–520 nm. The fibers have a Young's Modulus (Pluronic cladding) of 150 kPa and can be stretched to more than 5 times their length. The optical loss of the fibers shows little variation with extension. This work demonstrates how printing can simplify the fabrication of compliant and stretchable devices from materials approved for clinical use. These can be of interest for optogenetic or photopharmacology applications in extensible tissues, like muscles or heart.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11499
dc.identifier.urihttp://dx.doi.org/10.34657/10533
dc.language.isoeng
dc.publisherWeinheim : Wiley
dc.relation.doihttps://doi.org/10.1002/admt.202101539
dc.relation.essn2365-709X
dc.rights.licenseCC BY-NC 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0
dc.subject.ddc600
dc.subject.ddc610
dc.subject.otherelastomerseng
dc.subject.otherextrusion printingeng
dc.subject.otherhydrogelseng
dc.subject.otheroptical fiberseng
dc.subject.otheroptical waveguideseng
dc.subject.otherphotoactivationseng
dc.titleElastomeric Optical Waveguides by Extrusion Printingeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectMedizin, Gesundheitger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Elastomeric_Optical_Waveguides.pdf
Size:
5.55 MB
Format:
Adobe Portable Document Format
Description:
Collections