A photonic platform for donor spin qubits in silicon

dc.bibliographicCitation.issue7
dc.bibliographicCitation.volume3
dc.contributor.authorMorse, Kevin J.
dc.contributor.authorAbraham, Rohan J. S.
dc.contributor.authorDeAbreu, Adam
dc.contributor.authorBowness, Camille
dc.contributor.authorRichards, Timothy S.
dc.contributor.authorRiemann, Helge
dc.contributor.authorAbrosimov, Nikolay V.
dc.contributor.authorBecker, Peter
dc.contributor.authorPohl, Hans-Joachim
dc.contributor.authorThewalt, Michael L. W.
dc.contributor.authorSimmons, Stephanie
dc.date.accessioned2023-03-06T07:55:39Z
dc.date.available2023-03-06T07:55:39Z
dc.date.issued2017
dc.description.abstractDonor spins in silicon are highly competitive qubits for upcoming quantum technologies, offering complementary metal-oxide semiconductor compatibility, coherence (T2) times of minutes to hours, and simultaneous initialization, manipulation, and readout fidelities near ~99.9%. This allows for many quantum error correction protocols, which will be essential for scale-up. However, a proven method of reliably coupling spatially separated donor qubits has yet to be identified. We present a scalable silicon-based platform using the unique optical properties of “deep” chalcogen donors. For the prototypical 77Se+ donor, we measure lower bounds on the transition dipole moment and excited-state lifetime, enabling access to the strong coupling limit of cavity quantum electrodynamics using known silicon photonic resonator technology and integrated silicon photonics. We also report relatively strong photon emission from this same transition. These results unlock clear pathways for silicon-based quantum computing, spin-to-photon conversion, photonic memories, integrated single-photon sources, and all-optical switches.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11691
dc.identifier.urihttp://dx.doi.org/10.34657/10724
dc.language.isoeng
dc.publisherWashington, DC [u.a.] : Assoc.
dc.relation.doihttps://doi.org/10.1126/sciadv.1700930
dc.relation.essn2375-2548
dc.relation.ispartofseriesScience Advances 3 (2017), Nr. 7eng
dc.rights.licenseCC BY-NC 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0
dc.subjectCMOS integrated circuitseng
dc.subjectElectrodynamicseng
dc.subjectError correctioneng
dc.subjectExcited stateseng
dc.subjectMetalseng
dc.subjectMOS deviceseng
dc.subjectOptical propertieseng
dc.subjectOptical switcheseng
dc.subjectOxide semiconductorseng
dc.subjectParticle beamseng
dc.subjectPhotonic deviceseng
dc.subjectPhotonicseng
dc.subjectPhotonseng
dc.subjectQuantum computerseng
dc.subjectQuantum electronicseng
dc.subjectQuantum opticseng
dc.subjectQuantum theoryeng
dc.subjectSemiconducting siliconeng
dc.subject.ddc500
dc.subject.ddc530
dc.titleA photonic platform for donor spin qubits in siliconeng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleScience Advances
tib.accessRightsopenAccess
wgl.contributorIKZ
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sciadv-1700930.pdf
Size:
596.39 KB
Format:
Adobe Portable Document Format
Description:
Collections