Stationary particle currents in sedimenting active matter wetting a wall

dc.bibliographicCitation.articleNumber230.909.714
dc.bibliographicCitation.firstPage230.909.714
dc.bibliographicCitation.journalTitlearXiv.orgeng
dc.contributor.authorMangeat, Matthieu
dc.contributor.authorChakraborty, Shaur
dc.contributor.authorWysocki, Adam
dc.contributor.authorRieger, Heiko
dc.date.accessioned2024-06-11T06:52:58Z
dc.date.available2024-06-11T06:52:58Z
dc.date.issued2024
dc.description.abstractRecently it was predicted, on the basis of a lattice gas model, that scalar active matter in a gravitational field would rise against gravity up a confining wall or inside a thin capillary - in spite of repulsive particle-wall interactions [Phys. Rev. Lett. 124, 048001 (2020)]. In this paper we confirm this prediction with sedimenting active Brownian particles (ABPs) in a box numerically and elucidate the mechanism leading to the formation of a meniscus rising above the bulk of the sedimentation region. The height of the meniscus increases with the activity of the system, algebraically with the Péclet number. The formation of the meniscus is determined by a stationary circular particle current, a vortex, centered at the base of the meniscus, whose size and strength increase with the ABP activity. The origin of these vortices can be traced back to the confinement of the ABPs in a box: already the stationary state of ideal (non-interacting) ABPs without gravitation displays circular currents that arrange in a highly symmetric way in the eight octants of the box. Gravitation distorts this vortex configuration downward, leaving two major vortices at the two side walls, with a strong downward flow along the walls. Repulsive interactions between the ABPs change this situation only as soon as motility induced phase separation (MIPS) sets in and forms a dense, sedimented liquid region at the bottom, which pushes the center of the vortex upwards towards the liquid-gas interface. Self-propelled particles therefore represent an impressive realization of scalar active matter that forms stationary particle currents being able to perform visible work against gravity or any other external field, which we predict to be observable experimentally in active colloids under gravitation.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14682
dc.identifier.urihttps://doi.org/10.34657/13704
dc.language.isoeng
dc.publisher[Ithaca, NY] : Arxiv.org
dc.relation.doihttps://doi.org/10.48550/arxiv.2309.09714
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject.ddc530
dc.subject.otherSoft Condensed Matter (cond-mat.soft)eng
dc.subject.otherStatistical Mechanics (cond-mat.stat-mech)eng
dc.titleStationary particle currents in sedimenting active matter wetting a walleng
dc.typePreprinteng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2309-09714v2-1.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
Description:
Collections