Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-xSex (x = 0.5 and 1.0), a non-U material with Tc < TFM

Loading...
Thumbnail Image
Date
2016
Volume
6
Issue
Journal
Series Titel
Book Title
Publisher
London : Nature Publishing Group
Link to publishers version
Abstract

We have carried out detailed magnetic and transport studies of the new Sr0.5Ce0.5FBiS2-xSex (0.0 ≤ x ≤ 1.0) superconductors derived by doping Se in Sr0.5Ce0.5FBiS2. Se–doping produces several effects: it suppresses semiconducting–like behavior observed in the undoped Sr0.5Ce0.5FBiS2, the ferromagnetic ordering temperature, TFM, decreases considerably from 7.5 K (in Sr0.5Ce0.5FBiS2) to 3.5 K and the superconducting transition temperature, Tc, gets enhanced slightly to 2.9–3.3 K. Thus in these Se–doped materials, TFM is marginally higher than Tc. Magnetization studies provide evidence of bulk superconductivity in Sr0.5Ce0.5FBiS2-xSex at x ≥ 0.5 in contrast to the undoped Sr0.5Ce0.5FBiS2 (x = 0) where magnetization measurements indicate a small superconducting volume fraction. Quite remarkably, as compared with the effective paramagnetic Ce–moment (~2.2 μB), the ferromagnetically ordered Ce–moment in the superconducting state is rather small (~0.1 μB) suggesting itinerant ferromagnetism. To the best of our knowledge, Sr0.5Ce0.5FBiS2-x Sex (x = 0.5 and 1.0) are distinctive Ce–based bulk superconducting itinerant ferromagnetic materials with Tc < TFM. Furthermore, a novel feature of these materials is that they exhibit a dual and quite unusual hysteresis loop corresponding to both the ferromagnetism and the coexisting bulk superconductivity.

Description
Keywords
Ferromagnetism, Superconducting properties and materials
Citation
Thakur, G. S., Fuchs, G., Nenkov, K., Haque, Z., Gupta, L. C., & Ganguli, A. K. (2016). Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-xSex (x = 0.5 and 1.0), a non-U material with Tc < TFM. 6. https://doi.org//10.1038/srep37527
License
CC BY 4.0 Unported