Controlling the breakdown delay time in pulsed gas discharge

dc.bibliographicCitation.articleNumber03LT01
dc.bibliographicCitation.firstPage03LT01
dc.bibliographicCitation.issue3
dc.bibliographicCitation.journalTitlePlasma Sources Science and Technology
dc.bibliographicCitation.volume31
dc.contributor.authorSchweigert, I.V.
dc.contributor.authorHopkins, M.M.
dc.contributor.authorBarnat, E.
dc.contributor.authorKeidar, M.
dc.date.accessioned2025-02-27T08:32:39Z
dc.date.available2025-02-27T08:32:39Z
dc.date.issued2022
dc.description.abstractIn experiment and 2D3V PIC MCC simulations, the breakdown development in a pulsed discharge in helium is studied for U = 3.2 kV and 10 kV and P = 100 Torr. The breakdown process is found to have a stochastic nature, and the electron avalanche develops in different experimental and simulation runs with time delays ranging from 0.3 to 8 μs. Nevertheless our experiments demonstrate that the breakdown delay time distribution can be controlled with a change of the pulse discharge frequency. The simulation results show that the breakdown process can be distinguished in three stages with (a) the ionization by seed electrons, (b) the ions drift to the cathode and (c) the enhanced ionization within the cathode sheath by the electrons emitted from the cathode. The effects of variation of seed electron concentrations, voltage rise times, voltage amplitudes and ion-electron emission coefficients on the breakdown development in the pulsed gas discharge are reported.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/18622
dc.identifier.urihttps://doi.org/10.34657/17641
dc.language.isoeng
dc.publisherBristol : IOP Publ.
dc.relation.doihttps://doi.org/10.1088/1361-6595/ac417a
dc.relation.essn1361-6595
dc.relation.issn0963-0252
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc530
dc.subject.otherGas discharge, breakdown delay time, electron emissioneng
dc.titleControlling the breakdown delay time in pulsed gas dischargeeng
dc.typeArticle
dc.typeText
tib.accessRightsopenAccess
wgl.contributorINP
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schweigert_2022_Plasma_Sources_Sci_Technol_31_03LT01.pdf
Size:
2.81 MB
Format:
Adobe Portable Document Format
Description:
Collections