Nitric oxide density distributions in the effluent of an RF argon APPJ: Effect of gas flow rate and substrate

dc.bibliographicCitation.firstPage123011eng
dc.bibliographicCitation.journalTitleNew Journal of Physicseng
dc.bibliographicCitation.lastPage11397eng
dc.bibliographicCitation.volume16eng
dc.contributor.authorIseni, S.
dc.contributor.authorZhang, S.
dc.contributor.authorVan Gessel, A.F.H.
dc.contributor.authorHofmann, S.
dc.contributor.authorVan Ham, B.T.J.
dc.contributor.authorReuter, S.
dc.contributor.authorWeltmann, K.-D.
dc.contributor.authorBruggeman, P.J.
dc.date.accessioned2020-09-29T09:09:45Z
dc.date.available2020-09-29T09:09:45Z
dc.date.issued2014
dc.description.abstractThe effluent of an RF argon atmospheric pressure plasma jet, the so-called kinpen, is investigated with focus on the nitric-oxide (NO) distribution for laminar and turbulent flow regimes. An additional dry air gas curtain is applied around the plasma effluent to prevent interaction with the ambient humid air. By means of laser-induced fluorescence (LIF) the absolute spatially resolved NO density is measured as well as the rotational temperature and the air concentration. While in the laminar case, the transport of NO is attributed to thermal diffusion; in the turbulent case, turbulent mixing is responsible for air diffusion. Additionally, measurements with a molecular beam mass-spectrometer (MBMS) absolutely calibrated for NO are performed and compared with the LIF measurements. Discrepancies are explained by the contribution of the NO2 and N2O to the MBMS NO signal. Finally, the effect of a conductive substrate in front of the plasma jet on the spatial distribution of NO and air diffusion is also investigated.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4434
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5805
dc.language.isoengeng
dc.publisherBristol : IOPeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/16/12/123011
dc.relation.issn1367-2630
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subject.ddc530eng
dc.subject.otheratmospheric pressure plasma jetseng
dc.subject.otherlaser induced fluorescenceeng
dc.subject.othermolecular beam mass spectrometryeng
dc.subject.othernitric oxideeng
dc.subject.otherplasma medicineeng
dc.subject.otherspectroscopyeng
dc.subject.otherAireng
dc.subject.otherArgoneng
dc.subject.otherAtmospheric movementseng
dc.subject.otherAtmospheric pressureeng
dc.subject.otherAtmospheric thermodynamicseng
dc.subject.otherDiffusioneng
dc.subject.otherFlow of gaseseng
dc.subject.otherFluorescenceeng
dc.subject.otherLaser opticseng
dc.subject.otherLaser produced plasmaseng
dc.subject.otherMass spectrometryeng
dc.subject.otherMolecular beamseng
dc.subject.otherNitric oxideeng
dc.subject.otherPlasma jetseng
dc.subject.otherSpectrometerseng
dc.subject.otherSpectroscopyeng
dc.subject.otherTurbulent floweng
dc.subject.otherAtmospheric pressure plasma jetseng
dc.subject.otherConductive substrateseng
dc.subject.otherLaminar and turbulent floweng
dc.subject.otherLaser induced fluorescenceeng
dc.subject.otherMolecular beam mass spectrometereng
dc.subject.otherMolecular beam mass spectrometrieseng
dc.subject.otherPlasma medicineseng
dc.subject.otherRotational temperatureeng
dc.subject.otherFighter aircrafteng
dc.titleNitric oxide density distributions in the effluent of an RF argon APPJ: Effect of gas flow rate and substrateeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINPeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Iseni2014.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Description:
Collections