Four-Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies

Loading...
Thumbnail Image
Date
2020
Volume
59
Issue
39
Journal
Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker : International edition
Series Titel
Book Title
Publisher
Weinheim : Wiley-VCH
Link to publishers version
Abstract

Organization of gold nanoobjects by oligonucleotides has resulted in many three-dimensional colloidal assemblies with diverse size, shape, and complexity; nonetheless, autonomous and temporal control during formation remains challenging. In contrast, living systems temporally and spatially self-regulate formation of functional structures by internally orchestrating assembly and disassembly kinetics of dissipative biomacromolecular networks. We present a novel approach for fabricating four-dimensional gold nanostructures by adding an additional dimension: time. The dissipative character of our system is achieved using exonuclease III digestion of deoxyribonucleic acid (DNA) fuel as an energy-dissipating pathway. Temporal control over amorphous clusters composed of spherical gold nanoparticles (AuNPs) and well-defined core–satellite structures from gold nanorods (AuNRs) and AuNPs is demonstrated. Furthermore, the high specificity of DNA hybridization allowed us to demonstrate selective activation of the evolution of multiple architectures of higher complexity in a single mixture containing small and larger spherical AuNPs and AuNRs. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

Description
Keywords
Citation
Luo, M., Xuan, M., Huo, S., Fan, J., Chakraborty, G., Wang, Y., et al. (2020). Four-Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies (Weinheim : Wiley-VCH). Weinheim : Wiley-VCH. https://doi.org//10.1002/anie.202007616
Collections
License
CC BY 4.0 Unported