Structure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostars

dc.bibliographicCitation.firstPage39422eng
dc.bibliographicCitation.issue67eng
dc.bibliographicCitation.journalTitleRSC Advanceseng
dc.bibliographicCitation.lastPage39433eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorWahyuono, Ruri Agung
dc.contributor.authorDellith, Andrea
dc.contributor.authorSchmidt, Christa
dc.contributor.authorDellith, Jan
dc.contributor.authorIgnaszak, Anna
dc.contributor.authorSeyring, Martin
dc.contributor.authorRettenmayr, Markus
dc.contributor.authorFize, Jennifer
dc.contributor.authorArtero, Vincent
dc.contributor.authorChavarot-Kerlidou, Murielle
dc.contributor.authorDietzek, Benjamin
dc.date.accessioned2022-05-10T09:43:02Z
dc.date.available2022-05-10T09:43:02Z
dc.date.issued2019
dc.description.abstractWe report the wet chemical synthesis of mesoporous NiO nanostars (NS) as photocathode material for dye-sensitized solar cells (DSSCs). The growth mechanism of NiO NS as a new morphology of NiO is assessed by TEM and spectroscopic investigations. The NiO NS are obtained upon annealing of preformed β-Ni(OH)2 into pristine NiO with low defect concentrations and favorable electronic configuration for dye sensitization. The NiO NS consist of fibers self-assembled from nanoparticles yielding a specific surface area of 44.9 m2 g-1. They possess a band gap of 3.83 eV and can be sensitized by molecular photosensitizers bearing a range of anchoring groups, e.g. carboxylic acid, phosphonic acid, and pyridine. The performance of NiO NS-based photocathodes in photoelectrochemical application is compared to that of other NiO morphologies, i.e. nanoparticles and nanoflakes, under identical conditions. Sensitization of NiO NS with the benchmark organic dye P1 leads to p-DSSCs with a high photocurrent up to 3.91 mA cm-2 whilst the photoelectrochemical activity of the NiO NS photocathode in aqueous medium in the presence of an irreversible electron acceptor is reflected by generation of a photocurrent up to 23 μA cm-2 © 2019 The Royal Society of Chemistry.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8925
dc.identifier.urihttps://doi.org/10.34657/7963
dc.language.isoengeng
dc.publisherCambridge : RSCeng
dc.relation.doihttps://doi.org/10.1039/c9ra08785k
dc.relation.essn2046-2069
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subject.ddc540eng
dc.subject.otherDye-sensitized solar cellseng
dc.subject.otherEnergy gapeng
dc.subject.otherField emission cathodeseng
dc.subject.otherMorphologyeng
dc.subject.otherNanoparticleseng
dc.subject.otherPhotocathodeseng
dc.subject.otherPhotosensitizerseng
dc.subject.otherDefect concentrationseng
dc.subject.otherDye sensitizationeng
dc.subject.otherElectronic configurationeng
dc.subject.otherIdentical conditionseng
dc.subject.otherPhotoelectrochemical applicationseng
dc.subject.otherPhotoelectrochemicalseng
dc.subject.otherSpectroscopic investigationseng
dc.subject.otherWet chemical synthesiseng
dc.subject.otherNickel oxideeng
dc.titleStructure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostarseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c9ra08785k.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format
Description:
Collections