Organic aerosol source apportionment by offline-AMS over a full year in Marseille

dc.bibliographicCitation.firstPage8247
dc.bibliographicCitation.issue13
dc.bibliographicCitation.journalTitleAtmospheric Chemistry and Physicseng
dc.bibliographicCitation.lastPage8268
dc.bibliographicCitation.volume17
dc.contributor.authorBozzetti, Carlo
dc.contributor.authorEl Haddad, Imad
dc.contributor.authorSalameh, Dalia
dc.contributor.authorDaellenbach, Kaspar Rudolf
dc.contributor.authorFermo, Paola
dc.contributor.authorGonzalez, Raquel
dc.contributor.authorMinguillón, María Cruz
dc.contributor.authorIinuma, Yoshiteru
dc.contributor.authorPoulain, Laurent
dc.contributor.authorElser, Miriam
dc.contributor.authorMüller, Emanuel
dc.contributor.authorSlowik, Jay Gates
dc.contributor.authorJaffrezo, Jean-Luc
dc.contributor.authorBaltensperger, Urs
dc.contributor.authorMarchand, Nicolas
dc.contributor.authorPrévôt, André Stephan Henry
dc.date.accessioned2023-04-13T08:40:05Z
dc.date.available2023-04-13T08:40:05Z
dc.date.issued2017
dc.description.abstractWe investigated the seasonal trends of OA sources affecting the air quality of Marseille (France), which is the largest harbor of the Mediterranean Sea. This was achieved by measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). In total 216 PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) filter samples were collected over 1 year from August 2011 to July 2012. These filters were used to create 54 composite samples which were analyzed by offline-AMS. The same samples were also analyzed for major water-soluble ions, metals, elemental and organic carbon (EC/OC), and organic markers, including n-alkanes, hopanes, polycyclic aromatic hydrocarbons (PAHs), lignin and cellulose pyrolysis products, and nitrocatechols. The application of positive matrix factorization (PMF) to the water-soluble AMS spectra enabled the extraction of five factors, related to hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), oxygenated OA (OOA), and an industry-related OA (INDOA). Seasonal trends and relative contributions of OA sources were compared with the source apportionment of OA spectra collected from the AMS field deployment at the same station but in different years and for shorter monitoring periods (February 2011 and July 2008). Online- and offline-AMS source apportionment revealed comparable seasonal contribution of the different OA sources. Results revealed that BBOA was the dominant source during winter, representing on average 48 % of the OA, while during summer the main OA component was OOA (63 % of OA mass on average). HOA related to traffic emissions contributed on a yearly average 17 % to the OA mass, while COA was a minor source contributing 4 %. The contribution of INDOA was enhanced during winter (17 % during winter and 11 % during summer), consistent with an increased contribution from light alkanes, light PAHs (fluoranthene, pyrene, phenanthrene), and selenium, which is commonly considered as a unique coal combustion and coke production marker. Online- and offline-AMS source apportionments revealed evolving levoglucosan : BBOA ratios, which were higher during late autumn and March. A similar seasonality was observed in the ratios of cellulose combustion markers to lignin combustion markers, highlighting the contribution from cellulose-rich biomass combustion, possibly related to agricultural activities.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11931
dc.identifier.urihttp://dx.doi.org/10.34657/10964
dc.language.isoeng
dc.publisherKatlenburg-Lindau : EGU
dc.relation.doihttps://doi.org/10.5194/acp-17-8247-2017
dc.relation.essn1680-7324
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0
dc.subject.ddc550
dc.subject.otheraerosoleng
dc.subject.otherair qualityeng
dc.subject.othermass spectrometryeng
dc.subject.otherparticulate mattereng
dc.subject.otherseasonal variationeng
dc.subject.otherseasonalityeng
dc.subject.othersource apportionmenteng
dc.subject.otherBouches du Rhoneeng
dc.subject.otherFranceeng
dc.subject.otherMarseilleseng
dc.subject.otherProvence-Alpes-Cote d'Azureng
dc.titleOrganic aerosol source apportionment by offline-AMS over a full year in Marseilleeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorTROPOS
wgl.subjectGeowissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acp-17-8247-2017.pdf
Size:
7.67 MB
Format:
Adobe Portable Document Format
Description: