Permanent URI for this collection


Recent Submissions

Now showing 1 - 5 of 1624
  • Item
    LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
    (Katlenburg-Lindau : Copernicus, 2023) Ostberg, Sebastian; Müller, Christoph; Heinke, Jens; Schaphoff, Sibyll
    We present the Land Input Generator (LandInG) version 1.0, a new toolbox for generating input datasets for terrestrial ecosystem models (TEMs) from diverse and partially conflicting data sources. While LandInG 1.0 is applicable to process data for any TEM, it is developed specifically for the open-source dynamic global vegetation, hydrology, and crop growth model LPJmL (Lund-Potsdam-Jena with managed Land). The toolbox documents the sources and processing of data to model inputs and allows for easy changes to the spatial resolution. It is designed to make inconsistencies between different sources of data transparent so that users can make their own decisions on how to resolve these should they not be content with the default assumptions made here. As an example, we use the toolbox to create input datasets at 5 and 30 arcmin spatial resolution covering land, country, and region masks, soil, river networks, freshwater reservoirs, irrigation water distribution networks, crop-specific annual land use, fertilizer, and manure application. We focus on the toolbox describing the data processing rather than only publishing the datasets as users may want to make different choices for reconciling inconsistencies, aggregation, spatial extent, or similar. Also, new data sources or new versions of existing data become available continuously, and the toolbox approach allows for incorporating new data to stay up to date.
  • Item
    The Earth system model CLIMBER-X v1.0 - Part 2: The global carbon cycle
    (Katlenburg-Lindau : Copernicus, 2023) Willeit, Matteo; Ilyina, Tatiana; Liu, Bo; Heinze, Christoph; Perrette, Mahé; Heinemann, Malte; Dalmonech, Daniela; Brovkin, Victor; Munhoven, Guy; Börker, Janine; Hartmann, Jens; Romero-Mujalli, Gibran; Ganopolski, Andrey
    The carbon cycle component of the newly developed Earth system model of intermediate complexity CLIMBER-X is presented. The model represents the cycling of carbon through the atmosphere, vegetation, soils, seawater and marine sediments. Exchanges of carbon with geological reservoirs occur through sediment burial, rock weathering and volcanic degassing. The state-of-the-art HAMOCC6 model is employed to simulate ocean biogeochemistry and marine sediment processes. The land model PALADYN simulates the processes related to vegetation and soil carbon dynamics, including permafrost and peatlands. The dust cycle in the model allows for an interactive determination of the input of the micro-nutrient iron into the ocean. A rock weathering scheme is implemented in the model, with the weathering rate depending on lithology, runoff and soil temperature. CLIMBER-X includes a simple representation of the methane cycle, with explicitly modelled natural emissions from land and the assumption of a constant residence time of CH4 in the atmosphere. Carbon isotopes 13C and 14C are tracked through all model compartments and provide a useful diagnostic for model-data comparison. A comprehensive evaluation of the model performance for the present day and the historical period shows that CLIMBER-X is capable of realistically reproducing the historical evolution of atmospheric CO2 and CH4 but also the spatial distribution of carbon on land and the 3D structure of biogeochemical ocean tracers. The analysis of model performance is complemented by an assessment of carbon cycle feedbacks and model sensitivities compared to state-of-the-art Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Enabling an interactive carbon cycle in CLIMBER-X results in a relatively minor slow-down of model computational performance by ∼ 20 % compared to a throughput of ∼ 10 000 simulation years per day on a single node with 16 CPUs on a high-performance computer in a climate-only model set-up. CLIMBER-X is therefore well suited to investigating the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to >100000 years.
  • Item
    Air pollution trapping in the Dresden Basin from gray-zone scale urban modeling
    (Katlenburg-Lindau : EGU, 2023) Weger, Michael; Heinold, Bernd
    The microscale variability of urban air pollution is essentially driven by the interaction between meteorology and urban topography, which remains challenging to represent spatially accurately and computationally efficiently in urban dispersion models. Natural topography can additionally exert a considerable amplifying effect on urban background pollution, depending on atmospheric stability. This requires an equally important representation in models, as even subtle terrain-height variations can enforce characteristic local flow regimes. In this model study, the effects of urban and natural topography on the local winds and air pollution dispersion in the Dresden Basin in the Eastern German Elbe valley are investigated. A new, efficient urban microscale model is used within a multiscale air quality modeling framework. The simulations that consider real meteorological and emission conditions focus on two periods in late winter and early summer, respectively, as well as on black carbon (BC), a key air pollutant mainly emitted from motorized traffic. As a complement to the commonly used mass concentrations, the particle age content (age concentration) is simulated. This concept, which was originally developed to study hydrological reservoir flows in a Eulerian framework, is adapted here for the first time for atmospheric boundary-layer modeling. The approach is used to identify stagnant or recirculating orographic air flows and resulting air pollution trapping. An empirical orthogonal function (EOF) analysis is applied to the simulation results to attribute the air pollution modes to specific weather patterns and quantify their significance. Air quality monitoring data for the region are used for model evaluation. The model results show a strong sensitivity to atmospheric conditions, but generally confirm increased BC levels in Dresden due to the valley location. The horizontal variability of mass concentrations is dominated by the patterns of traffic emissions, which overlay potential orography-driven pollutant accumulations. Therefore, an assessment of the orographic impact on air pollution is usually inconclusive. However, using the age-concentration metric, which filters out direct emission effects, previously undetected spatial patterns are discovered that are largely modulated by the surface orography. The comparison with a dispersion simulation assuming spatially homogeneous emissions also proves the robustness of the orographic flow information contained in the age-concentration distribution and shows it to be a suitable metric for assessing orographic air pollution trapping. The simulation analysis indicates several air quality hotspots on the southwestern slopes of the Dresden Basin and in the southern side valley, the Döhlen Basin, depending on the prevailing wind direction.
  • Item
    Next-generation ice-nucleating particle sampling on board aircraft: characterization of the High-volume flow aERosol particle filter sAmpler (HERA)
    (Katlenburg-Lindau : Copernicus, 2023) Grawe, Sarah; Jentzsch, Conrad; Schaefer, Jonas; Wex, Heike; Mertes, Stephan; Stratmann, Frank
    Atmospheric ice-nucleating particle (INP) concentration data from the free troposphere are sparse but urgently needed to understand vertical transport processes of INPs and their influence on cloud formation and properties. Here, we introduce the new High-volume flow aERosol particle filter sAmpler (HERA) which was specially developed for installation on research aircraft and subsequent offline INP analysis. HERA is a modular system consisting of a sampling unit and a powerful pump unit, and it has several features which were integrated specifically for INP sampling. Firstly, the pump unit enables sampling at flow rates exceeding 100 L min-1, which is well above typical flow rates of aircraft INP sampling systems described in the literature (∼ 10 L min-1). Consequently, required sampling times to capture rare, high-temperature INPs (≥ -15 C) are reduced in comparison to other systems, and potential source regions of INPs can be confined more precisely. Secondly, the sampling unit is designed as a seven-way valve, enabling switching between six filter holders and a bypass with one filter being sampled at a time. In contrast to other aircraft INP sampling systems, the valve position is remote-controlled via software so that manual filter changes during flight are eliminated and the potential for sample contamination is decreased. This design is compatible with a high degree of automation, i.e., triggering filter changes depending on parameters like flight altitude, geographical location, temperature, or time. In addition to presenting the design and principle of operation of HERA, this paper describes laboratory characterization experiments with size-selected test substances, i.e., SNOMAX® and Arizona Test Dust. The particles were sampled on filters with HERA, varying either particle diameter (300 to 800 nm) or flow rate (10 to 100 L min-1) between experiments. The subsequent offline INP analysis showed good agreement with literature data and comparable sampling efficiencies for all investigated particle sizes and flow rates. Furthermore, the collection efficiency of atmospheric INPs in HERA was compared to a straightforward filter sampler and good agreement was found. Finally, results from the first campaign of HERA on the High Altitude and LOng range research aircraft (HALO) demonstrate the functionality of the new system in the context of aircraft application.
  • Item
    Overview: The Baltic Earth Assessment Reports (BEAR)
    (Göttingen : Copernicus Publ., 2023) Meier, H. E. Markus; Reckermann, Marcus; Langner, Joakim; Smith, Ben; Didenkulova, Ira
    Baltic Earth is an independent research network of scientists from all Baltic Sea countries that promotes regional Earth system research. Within the framework of this network, the Baltic Earth Assessment Reports (BEARs) were produced in the period 2019-2022. These are a collection of 10 review articles summarising current knowledge on the environmental and climatic state of the Earth system in the Baltic Sea region and its changes in the past (palaeoclimate), present (historical period with instrumental observations) and prospective future (until 2100) caused by natural variability, climate change and other human activities. The division of topics among articles follows the grand challenges and selected themes of the Baltic Earth Science Plan, such as the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Each review article contains an introduction, the current state of knowledge, knowledge gaps, conclusions and key messages; the latter are the bases on which recommendations for future research are made. Based on the BEARs, Baltic Earth has published an information leaflet on climate change in the Baltic Sea as part of its outreach work, which has been published in two languages so far, and organised conferences and workshops for stakeholders, in collaboration with the Baltic Marine Environment Protection Commission (Helsinki Commission, HELCOM).